TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Ring-Expansion Polymerization (REP) of L-lactide with cyclic Tin(II) Bisphenoxides N2 - Five new cyclic catalysts were prepared by a new synthetic method from tin(II)-2-ethyhexanoate and silylated catechols, silylated 2,2´dihydroxybiphenyl or silylated 1,1´-bisnaphthol. These catalysts were compared with regard to their usefulness as catalysts for the ring expansion polymerization (REP) of L-lactide in bulk at 160 °C, and with two different tin(IV) derivatives of 1,1´binaphthol. Best results were obtained using seven-membered cyclic tin(II)bisphenoxides, which yielded colorless cyclic poly(l-lactide)s free of racemization with weight average molecular weights (Mw) up to 305 000 g mol-1. Furthermore, these catalysts were active even at a lactide/catalyst ratio of 20 000/1. Our new results were superior to those obtained from all other previously published catalysts yielding cyclic poly(L-lactide). The seven-membered cycles also proved to be more active than tin(II) 2-ethylhexanoate with and without the addition of alcohol. KW - Lactide KW - Cyclization KW - Ring-expansion polymerization KW - Tin(II)octanoate KW - MALDI-TOF MS PY - 2019 DO - https://doi.org/10.1016/j.eurpolymj.2019.04.024 SN - 0014-3057 SN - 1873-1945 VL - 116 SP - 256 EP - 264 PB - Elsevier Ltd. AN - OPUS4-47794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Scheliga, Felix A1 - Kricheldorf, Hans R. T1 - Polycondensation, Cyclization and Disproportionation of Solid Poly(L-lactide) Trifluoroethyl Esters and the Simultaneous Formation of Extended Chain Crystals and Extended Ring Crystals N2 - Two poly(L-lactide)s (PLAs) with a degree of polymerization (DP) of 20 or 100 were prepared by trifluoroethanol-initiated ring-opening polymerization (ROP) catalyzed by tin(II) 2-ethyl hexanoate (SnOct2). These PLAs were annealed at 140 ◦C or at 160 ◦C in the presence of SnOct2, and the changes in topology and molecular weight distribution (MWD) were monitored by matrix-assisted laser desorption/ionization time-of flight (MALDI TOF) mass spectrometry and gel permeation chromatography (GPC). For the PLA with a DP 20, the main reaction was polycondensation combined with higher dispersities. In the case of the DP 100, PLA polycondensation was combined with disproportionation and the formation of a new MWD maximum around m/z 3500. In addition, extensive cyclization occurred, and the resulting cyclic PLAs crystallized separately from the linear chains in the form of extended ring crystals. These results also suggest that both extended chain and extended ring crystals posses the same crystal thickness as a result of thermodynamically controlled transesterification in the solid state. KW - Polycondensation KW - MALDI KW - Polylactide KW - Cyclization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-616441 DO - https://doi.org/10.1016/j.polymer.2024.127800 VL - 315 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-61644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Polycondensation of L-lactic acid: a deeper look into solid state polycondensation N2 - L-Lactic acid (LA) was condensed in the presence of SnCl2 or 4-toluenesulfonic acid (TSA) at 140 °C, and chain growth without cyclization was observed. In addition, poly(L-lactic acid)s (PLAs) with a degree of polymerization (DP) of 25, 50 or 100 were prepared by water-initiated ring-opening polymerization (ROP). These PLAs were annealed in the solid state at 140 °C and 160 °C in the presence of tin(II) 2-ethylhexanoate (SnOct2, SnCl2 or TSA). The changes in the molar mass distribution and in the topology were characterized by means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and size exclusion chromatography (SEC). With increasing time, fewer side reactions caused higher molar masses and increasing fractions of cyclic polylactides (cPLA) were obtained. Their “saw tooth” pattern in the MALDI-TOF mass spectra indicated the formation of extended ring crystallites in the solid state. TSA was the most active catalyst and caused fewer side reactions than SnCl2, which was the least reactive catalyst. Acetylation of the CH-OH end groups hindered polycondensation and prevented the formation of cPLAs. Reaction mechanisms will be discussed. KW - MALDI-TOF MS KW - Polycondensation KW - Polylaktide KW - Solid state PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625271 DO - https://doi.org/10.1039/d4py01191k SN - 1759-9962 SP - 1 EP - 9 PB - Royal Society of Chemistry (RSC) AN - OPUS4-62527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Cyclic poly(l-lactide) via ring-expansion polymerization by means of dibutyltin 4-tert-butylcatecholate N2 - Five new catalysts are prepared from dibutyltin oxide and catechol (HCa), 2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful results. When benzyl alcohol is used as an initiator, linear chains having benzyl ester end groups are formed in a slow polymerization process. In contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained. At 160 °C and short reaction times even-numbered cycles are slightly prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly formed. These results definitely prove that a ring-expansion mechanism is operating. KW - Lactides KW - MALDI TOF MS KW - Morphology KW - Ring-opening polymerization KW - Tin catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201700274 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 22 SP - 1700274, 1 EP - 1700274, 10 PB - Wiley VCH CY - Weinheim AN - OPUS4-43583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -