TY - JOUR A1 - Sypaseuth, Fanni D. A1 - Gallo, Emanuela A1 - Çiftci, Serhat A1 - Schartel, Bernhard T1 - Polylactic acid biocomposites: approaches to a completely green flame retarded polymer N2 - Basic paths towards fully green flame retarded kenaf fiber reinforced polylactic acid (K-PLA) biocomposites are compared. Multicomponent flame retardant Systems are investigated using an amount of 20 wt% such as Mg(OH)2 (MH), ammonium polyphosphate (APP) and expandable graphite (EG), and combinations with Silicon dioxide or layered silicate (LS) nanofillers. Adding Kenaf fibers and flame retardants increases the E modulus up to a factor 2, although no compatibilizer was used at all. Thus, in particular adding EG and MH decreases the strength at maximum elongation, and kenaf fibers, MH, and EG are crucial for reducing the elongation to break. The Oxygen index is improved by up to 33 vol% compared to 17 vol% for K-PLA. The HB classification of K-PLA in the UL 94 test is outperformed. All flame retarded biocomposites show somewhat lower thermal stability and increased amounts of residue. MH decreases the fire load significantly, and the greatest reduction in peak heat release rate is obtained for K-PLA/15MH/5LS. Synergistic effects are observed between EG and APP (ratio 2:1) in flammability and fire properties. Synergistic multicomponent systems containing EG and APP, or MH with adjuvants offer a promising route to green flame retarded natural fiber reinforced PLA biocomposites. KW - Biopolymers KW - Composites KW - Flame retardance KW - Natural fibres KW - Thermal decomposition PY - 2017 DO - https://doi.org/10.1515/epoly-2017-0024 SN - 2197-4586 SN - 1618-7229 VL - 17 IS - 6 SP - 449 EP - 462 PB - De Gruyter AN - OPUS4-42872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Sypaseuth, Fanni D. A1 - Schubert, M. A1 - Schoch, R. A1 - Bastian, M. A1 - Schartel, Bernhard T1 - Routes to halogen‐free flame‐retardant polypropylene wood plastic composites N2 - Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transportation sectors. This work imparts a systematic comprehensive understanding and assessment of different basic routes to halogen‐free flame‐retarded WPC, taking into account economic and environmental considerations. Cheap, halogen‐free single‐component flame retardants and their multicomponent systems are investigated at reasonable filling grades of 20 wt%. The basic routes of promising synergistic multicomponent systems are discussed, and their potential and Limits assessed. Optimizing the consistency of fire residue; closing the surface of inorganic‐organic residual layers; the thermal stabilization and design of the residue, eg, synergistic combination of ammonium polyphosphate and expandable graphite; and the combination of different flame‐retardant mechanisms, eg, intumescence and flame inhibition, are proposed as promising routes to boost the flame‐retardant efficiency. KW - Flammability KW - Halogen‐free KW - Multicomponent systems KW - Polypropylene KW - Wood plastic composite (WPC) PY - 2019 DO - https://doi.org/10.1002/pat.4458 SN - 1099-1581 SN - 1042-7147 VL - 30 IS - 1 SP - 187 EP - 202 PB - Wiley AN - OPUS4-46909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -