TY - CONF A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Morphological characterisation of explosive powders by XCT: When grain numbers count N2 - Ammonium nitrate (AN) prills are commonly used as an ingredient in industrial explosives and in fertilisers. Conventional techniques (such as BET or mercury intrusion porosimetry) can measure the open porosity and specific surface area of AN prill, but the closed porosity is not obtainable. This work was focused on evaluating X-ray computed tomography (XCT) as a non-destructive technique for the assessment of porosity in AN prills. An advanced data processing workflow was developed so that the segmentation and quantification of the CT data could be performed on the entire 3D volume, yet allowing the measurements (e.g.; volume, area, shape factor…) to be extracted for each individual phase (prill, open porosity, closed porosity) of each individual prill, in order to obtain statistically relevant data. Clear morphological and structural differences were seen and quantified between fertiliser and explosive products. Overall, CT can provide a very wide range of parameters that are not accessible to other techniques, destructive or non-destructive, and thus offers new insights and complementary information. T2 - iCT2020 CY - Wels, Austria DA - 04.02.2020 KW - Ammonium nitrate KW - Prill KW - Non-destructive characterisation KW - Porosity KW - Specific surface area PY - 2020 AN - OPUS4-50347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Morphological characterisation of explosive powders by XCT: When grain numbers count JF - The e-journal of nondestructive testing & ultrasonics N2 - Ammonium nitrate (AN) prills are commonly used as an ingredient in industrial explosives and in fertilisers. Conventional techniques (such as BET or mercury intrusion porosimetry) can measure the open porosity and specific surface area of AN prill, but the closed porosity is not obtainable. This work was focused on evaluating X-ray computed tomography (XCT) as a non-destructive technique for the assessment of porosity in AN prills. An advanced data processing workflow was developed so that the segmentation and quantification of the CT data could be performed on the entire 3D volume, yet allowing the measurements (e.g.; volume, area, shape factor…) to be extracted for each individual phase (prill, open porosity, closed porosity) of each individual prill, in order to obtain statistically relevant data. Clear morphological and structural differences were seen and quantified between fertiliser and explosive products. Overall, CT can provide a very wide range of parameters that are not accessible to other techniques, destructive or non-destructive, and thus offers new insights and complementary information. T2 - 10th Conference on Industrial Computed Tomography (iCT 2020) CY - Wels, Austria DA - 04.02.2020 KW - Ammonium nitrate KW - Prill KW - Non-destructive characterisation KW - Porosity KW - Specific surface area PY - 2020 UR - http://www.ndt.net/?id=25118 SN - 1435-4934 VL - 25 IS - 2 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-50348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -