TY - JOUR A1 - Zier, M. A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Radtke, Martin A1 - Munnik, F. T1 - Accurate stopping power determination of 15N ions for hydrogen depth profiling by a combination of ion beams and synchrotron radiation N2 - Hydrogen analysis is of particular importance in thin film technology and it is often necessary to obtain a depth profile. The method with the best depth resolution is NRA using the 6385 keV resonance of the 1H(15N,αγ)12C nuclear reaction. The correct quantification of the depth and concentration scales in the measured hydrogen profiles relies on accurate stopping power values. We present a method to deduce these values from a combination of two techniques: NRA and X-ray reflectometry (XRR). This method is applied to the determination of the stopping power of ~6.4 MeV 15N ions in H-containing amorphous Si-layers (a-Si:H). Density-independent stopping powers at different H concentrations are determined by combining the results from NRA and XRR with an overall uncertainty of 3.3%, showing good agreement with SRIM values. This work shows exemplary the methodology for future evaluation of stopping powers for quality assurance in NRA. KW - Nuclear reaction analysis KW - Hydrogen depth profiling KW - Stopping cross section KW - Linear energy transfer KW - Synchrotron radiation KW - XRR PY - 2012 U6 - https://doi.org/10.1016/j.nimb.2011.07.027 SN - 0168-583X SN - 1872-9584 VL - 273 SP - 18 EP - 21 PB - Elsevier CY - Amsterdam AN - OPUS4-25722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nowak, S.H. A1 - Bjeoumikhov, A. A1 - Von Borany, J. A1 - Buchriegler, J. A1 - Munnik, F. A1 - Petric, M. A1 - Renno, A.D. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Scharf, O. A1 - Strüder, L. A1 - Wedell, R. A1 - Ziegenrücker, R. T1 - Examples of XRF and PIXE imaging with few microns resolution using SLcam® a color X-ray camera N2 - We present results of recent development of the color X-ray camera, type SLcam®, allowing detection of X-ray images with few microns resolution. Such spectral resolution is achieved with the use of high-quality polycapillary optics combined with sub-pixel resolution. Imaging of Siemens star resolution test chart reveals that the resolution limit of SLcam® can go down to nearly 5µm. Several real sample examples of measurements carried out at the laboratory, synchrotron, and particle-induced X-ray emission beamlines are shown. This is the first time SLcam® is used as particle-induced X-ray emission detector. KW - X-ray KW - Color X-ray camera KW - CXC KW - Synchrotron radiation KW - BESSY KW - BAMline PY - 2015 U6 - https://doi.org/10.1002/xrs.2590 SN - 0049-8246 VL - 44 IS - 3 SP - 135 EP - 140 PB - Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-33170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -