TY - JOUR A1 - Diepeveen, L. E. A1 - Laarakkers, C. M. M. A1 - Martos, G. A1 - Pawlak, M. E. A1 - Uguz, F. F. A1 - Verbene, K. E. S. A. A1 - van Swelm, R. P. L. A1 - Klaver, S. A1 - de Haan, A. F. J. A1 - Pitts, K. R. A1 - Bansal, S. S. A1 - Abbas, Ioana M. A1 - Fillet, M. A1 - Lefebvre, T. A1 - Geurts-Moespot, A. J. A1 - Girelli, D. A1 - Castagna, A. A1 - Herkert, M. A1 - Itkonen, O. A1 - Olbina, G. A1 - Tomosugi, N. A1 - Westerman, M. E. A1 - Delatour, V. A1 - Weykamp, C. W. A1 - Swinkels, D. W. T1 - Provisional standardization of hepcidin assays: creating a traceability chain with a primary reference material, candidate reference method and a commutable secondary reference material JF - Clinical Chemistry and Laboratory Medicine (CCLM) N2 - Hepcidin-25 concentrations measured by various methods differ considerably, complicating interpretation. Here, a previously identified plasma-based candidate secondary reference material (csRM) was modified into a serum-based two-leveled sRM. We validated its functionality to increase the equivalence between methods for international standardization. We applied technical procedures developed by the International Consortium for Harmonization of Clinical Laboratory Results. The sRM, consisting of lyophilized serum with cryolyoprotectant, appeared commutable among nine different measurement procedures using 16 native human serum samples in a first round robin (RR1). Harmonization potential of the sRM was simulated in RR1 and evaluated in practice in RR2 among 11 measurement procedures using three native human plasma samples. Comprehensive purity analysis of a candidate primary RM (cpRM) was performed by state-of-the-art procedures. The sRM was value assigned with an isotope dilution mass spectrometry-based candidate reference method calibrated using the certified pRM. The inter-assay CV without harmonization was 42.1% and 52.8% in RR1 and RR2, respectively. In RR1, simulation of harmonization with sRM resulted in an inter-assay CV of 11.0%, whereas in RR2 calibration with the material resulted in an inter-assay CV of 19.1%. Both the sRM and pRM passed international homogeneity criteria and showed long-term stability. We assigned values to the low (0.95 ± 0.11 nmol/L) and middle concentration (3.75 ± 0.17 nmol/L) calibrators of the sRM. Standardization of hepcidin is possible with our sRM, which value is assigned by a pRM. We propose the implementation of this material as an international calibrator for hepcidin-25. KW - Reference material KW - Peptide KW - Biomarker KW - Bioanalysis KW - Mass spectrometry KW - LC-MS/MS KW - Iron deficiency KW - MALDI-TOF MS KW - UHPLC-MS/MS KW - ELISA KW - Immunoassay PY - 2018 DO - https://doi.org/10.1515/cclm-2018-0783 SN - 1437-4331 SN - 1434-6621 VL - 57 IS - 6 SP - 864 EP - 872 PB - De Gruyter CY - Berlin AN - OPUS4-47153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzugan, J. A1 - Lucon, E. A1 - Koukolikova, M. A1 - Li, Y. A1 - Rzepa, S. A1 - Yasin, M.S. A1 - Shao, S. A1 - Shamsaei, N. A1 - Seifi, M. A1 - Lodeiro, M. A1 - Lefebvre, F. A1 - Mayer, U. A1 - Olbricht, J. A1 - Houska, M. A1 - Mentl, V. A1 - You, Z. T1 - ASTM interlaboratory study on tensile testing of AM deposited and wrought steel using miniature specimens JF - Theoretical and Applied Fracture Mechanics N2 - An interlaboratory study, involving eigth international laboratories and coordinated by COMTES FHT (Czech Republic), was conducted to validate tensile measurements obtained using miniature specimens on additively manufactured (AM) components and artifacts. In addition to AM 316L stainless steel (316L SS), a wrought highstrength steel (34CrNiMo6V, equivalent to AISI 4340) was also used. Based on the results, a precision statement in accordance with ASTM E691 standard practice was developed, intended for inclusion in a proposed annex to the ASTM E8/E8M tension testing method. The primary outcomes of the study highlighted the agreement between yield and tensile strength measured from miniature and standard-sized tensile specimens. Furthermore, most tensile properties exhibited similar standard deviations, offering users insight into the efficacy of miniature specimen applications. KW - 316L stainless steel KW - Additive manufacturing KW - High-strength steel KW - Miniature specimens KW - Tensile tests PY - 2024 DO - https://doi.org/10.1016/j.tafmec.2024.104410 SN - 0167-8442 VL - 131 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -