TY - JOUR A1 - Anzt, H. A1 - Bach, F. A1 - Druskat, S. A1 - Löffler, F. A1 - Loewe, A. A1 - Renard, B. Y. A1 - Seemann, G. A1 - Struck, A. A1 - Achhammer, E. A1 - Aggarwal, P. A1 - Appel, F. A1 - Bader, M. A1 - Brusch, L. A1 - Busse, C. A1 - Chourdakis, G. A1 - Dabrowski, P. W. A1 - Ebert, P. A1 - Flemisch, B. A1 - Friedl, S. A1 - Fritzsch, B. A1 - Funk, M. D. A1 - Gast, V. A1 - Goth, F. A1 - Grad, J. A1 - Hegewald, J. A1 - Hermann, S. A1 - Hohmann, F. A1 - Janosch, S. A1 - Kutra, D. A1 - Linxweiler, J. A1 - Muth, Thilo A1 - Peters-Kottig, W. A1 - Rack, F. A1 - Raters, F. H. C. A1 - Rave, S. A1 - Reina, G. A1 - Reißig, M. A1 - Ropinski, T. A1 - Schaarschmidt, J. A1 - Seibold, H. A1 - Thiele, J. P. A1 - Uekermann, B. A1 - Unger, S. A1 - Weeber, R. T1 - An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action JF - F1000 Research N2 - Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin. KW - Research Software KW - Sustainable Software Development KW - Academic Software KW - Software Infrastructure KW - Software Training KW - Software Licensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522029 DO - https://doi.org/10.12688/f1000research.23224.2 VL - 9 SP - 1 EP - 35 AN - OPUS4-52202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, F. A1 - Schmidt, C. A1 - Löffler, E. A1 - Menzel, Michael A1 - Grünert, W. T1 - Fe-ZSM-5 Catalysts for the Selective Reduction of NO by Isobutane - The Problem of the Active Sites JF - Journal of catalysis N2 - Relations between the structure of Fe–ZSM-5 catalysts prepared by interaction of FeCl3 with H–ZSM-5 and their catalytic behavior in the SCR of NO by isobutane were investigated by combining results of catalytic studies (1000 ppm NO, 1000 ppm isobutane, and 2% O2 in He, 30,000 h-1) and of physicochemical characterization (XRD, EXAFS, Mössbauer spectroscopy, TPR, IR, XPS). By variation of the preparation conditions (method of FeCl3 introduction—chemical vapor deposition or solid-state ion exchange, washing intensity, calcination regime) and of the matrix (H–ZSM-5 with normal and high defect density), Fe–ZSM-5 materials with strongly varying properties (aggregation degree of the Fe phase, acidity) were obtained. Significant discrepancies between conclusions derived from EXAFS, TPR, and Mössbauer spectroscopy were ascribed to a preference of Mössbauer spectroscopy for the detection of aggregated phases and a high defectivity of Fe oxide clusters formed upon calcination. The critical step for the preparation of a highly disperse Fe phase is extensive washing after Fe introduction. The catalytic behavior of overexchanged Fe–ZSM-5 materials prepared by interaction of FeCl3 with H–ZSM-5 of normal defect density was not influenced by aggregation of a significant part of the Fe phase. The comparison of their catalytic properties with those of a Fe2O3/H–ZSM-5 mechanical mixture and of catalysts prepared by aqueous ion exchange or by CVD of FeCl3 into H–ZSM-5 of high defect density implies that the particular activity of overexchanged Fe–ZSM-5 arises from minority sites. In these, the Fe ions are probably isolated. Other Fe sites of low nuclearity appear to add to the activity. The poor SCR performance (at a given ability for isobutane activation) of Fe–ZSM-5 prepared with a defective ZSM-5 matrix may indicate that the Fe sites which provi de the particular activity of overexchanged Fe–ZSM-5 require the cooperation of acidic sites. KW - deNOx KW - Hydrocarbons KW - Isobutane KW - Fe-ZSM-5 KW - EXAFS KW - Mössbauer spectroscopy KW - Temperature-programmed reduction PY - 2002 DO - https://doi.org/10.1006/jcat.2002.3775 SN - 0021-9517 SN - 1090-2694 VL - 212 SP - 157 EP - 172 PB - Acad. Press CY - San Diego, Calif. AN - OPUS4-2258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -