TY - JOUR A1 - Lozano-Martín, D. A1 - Pazoki, F. A1 - Kipphardt, Heinrich A1 - Khanipour, P. A1 - Tuma, Dirk A1 - Horillo, A. A1 - Chamorro, C. R. T1 - Thermodynamic (p, ρ, T) characterization of a reference high-calorific natural gas mixture when hydrogen is added up to 20 % (mol/mol) N2 - The injection of hydrogen into the natural-gas grid is an alternative during the process of a gradual decarbonization of the heat and power supply. When dealing with hydrogen-enriched natural gas mixtures, the performance of the reference equations of state habitually used for natural gas should be validated by using high-precision experimental thermophysical data from multicomponent reference mixtures prepared with the lowest possible uncertainty in composition. In this work, we present experimental density data for an 11-compound high-calorific (hydrogen-free) natural gas mixture and for two derived hydrogen-enriched natural gas mixtures prepared by adding (10 and 20) mol-% of hydrogen to the original standard natural gas mixture. The three mixtures were prepared gravimetrically according to ISO 6142–1 for maximum precision in their composition and thus qualify for reference materials. A single-sinker densimeter was used to determine the density of the mixtures from (250–350) K and up to 20 MPa. The experimental density results of this work have been compared to the densities calculated by three different reference equations of state for natural gas related mixtures: the AGA8-DC92 EoS, the GERG-2008 EoS, and an improved version of the GERG-2008 EoS. While relative deviations of the experimental density data for the hydrogen-free natural gas mixture are always within the claimed uncertainty of the three considered equations of state, larger deviations can be observed for the hydrogen-enriched natural gas mixtures from any of the three equations of state, especially for the lowest temperature and the highest pressures. KW - Hydrogen-enriched natural gas KW - Single-sinker densimeter KW - High-pressure density KW - Equations of state PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604742 DO - https://doi.org/10.1016/j.ijhydene.2024.05.028 SN - 0360-3199 VL - 70 SP - 118 EP - 135 PB - Elsevier BV CY - Amsterdam AN - OPUS4-60474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Berger, Achim A1 - Calligaro, T. A1 - Duval, A. A1 - Görner, Wolf A1 - Guerra, M.-F. A1 - Merchel, Silke A1 - Radtke, Martin A1 - Reiche, I. A1 - Riesemeier, Heinrich A1 - Roth, M. T1 - Study of Ag and Au based historical and archaeological objects by high energy Sy-XRF KW - Synchrotron KW - XRF analysis KW - Drawings KW - Archaeometry KW - Gold KW - Röntgenfluoreszenzanalyse KW - RFA KW - Zeichnungen KW - Archäometrie KW - Albrecht Dürer KW - gold PY - 2004 UR - http://www.helmholtz-berlin.de/media/media/oea/web/pr_webseite/druckschriften/berichte/bessy/annualreport2003.pdf#page=544 SN - 0179-4159 SP - 544 EP - 546 PB - Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung CY - Berlin AN - OPUS4-3507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühler, T. A1 - Helsch, G. A1 - Heinrich, J.G. A1 - Yao, Dongxu A1 - Gräf, S. A1 - Müller, F.A. A1 - Günster, Jens T1 - Strategies for the selective volume sintering of ceramics N2 - The present study is dealing with the basic physics for a novel way to generate a free-formed ceramic body, not like common layer by layer, but directly by Selective Volume Sintering (SVS) in a compact block of ceramic powder. To penetrate with laser light into the volume of a ceramic powder compact it is necessary to investigate the light scattering properties of ceramic powders. Compared with polymers and metals, ceramic materials are unique as they offer a wide optical window of transparency. The optical window typically ranges from below 0.3 up to 5 µm wave length. In the present study thin layers of quartz glass (SiO2) particles have been prepared. As a function of layer thickness and the particle size, transmission and reflection spectra in a wave length range between 0.5 and 2.5 µm have been recorded. Depending on the respective particle size and by choosing a proper relation between particle size and wave length of the incident laser radiation, it is found that light can penetrate a powder compact up to a depth of a few millimeters. With an adjustment of the light absorption properties of the compact the initiation of sintering in the volume of the compact is possible. KW - Additive Manufacturing PY - 2014 DO - https://doi.org/10.1557/jmr.2014.174 SN - 0884-2914 VL - 29 IS - 17 SP - 2095 EP - 2099 PB - Materials Research Society CY - Warrendale, Pa. AN - OPUS4-32544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radtke, Martin A1 - Reiche, I. A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Guerra, M.F. T1 - Beyond the Great Wall: Gold of the silk roads and the first empire of the Steppes N2 - Fingerprinting ancient gold work requires the use of nondestructive techniques with high spatial resolution (down to 25 µm) and good detection limits (micrograms per gram level). In this work experimental setups and protocols for synchrotron radiation induced X-ray fluorescence (SRXRF) at the BAMline of the Berlin electron storage ring company for synchrotron radiation (BESSY) in Berlin for the measurement of characteristic trace elements of gold are compared considering the difficulties, shown in previous works, connected to the quantification of Pt. The best experimental conditions and calculation methods were achieved by using an excitation energy of 11.58 keV, a silicon drift chamber detector (SDD) detector, and pure element reference standards. A detection limit of 3 µg/g has been reached. This newly developed method was successfully applied to provenancing the Xiongnu gold from the Gol Mod necropolis, excavated under the aegis of the United Nations Educational, Scientific and Cultural Organization (UNESCO). The composition of the base alloys and the presence of Pt and Sn showed that, contrary to what is expected, the gold foils from the first powerful empire of the steppes along the Great Wall were produced with alluvial gold from local placer deposits located in Zaamar, Boroo, and in the Selenga River. KW - Synchrotron radiation KW - X-ray fluorescence KW - Limit of detection KW - Platinum KW - Silicon drift detector KW - SR-microXRF KW - Elemental imaging KW - Gold PY - 2013 DO - https://doi.org/10.1021/ac3025416 SN - 0003-2700 SN - 1520-6882 VL - 85 IS - 3 SP - 1650 EP - 1656 PB - American Chemical Society CY - Washington, DC AN - OPUS4-30224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radtke, Martin A1 - Buzanich, Günter A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, O. A1 - Scholz, Philipp A1 - Guerra, M.F. T1 - Double Dispersive X-Ray Fluorescence (D2XRF) based on an Energy Dispersive pnCCD detector for the detection of platinum in gold N2 - With the aim of improving limits of detection (LOD) of trace elements in a matrix with adjacent fluorescence energies, a simple double dispersive X-ray fluorescence detection system (D2XRF) was constructed to operate at the beamlines BAMline and the mySpot @ BESSY II. This system is based on the combination of a crystal analyzer with an energy resolving single photon counting pnCCD. Without further collimators, the efficient suppression of the background by the pnCCD and the good energy resolution of the crystal results in improved LOD. In first order reflections, an energy resolution of 13 eV for Cu Kα was reached, and an energy range of 1 keV was covered in one shot. This new system was applied to the detection of platinum (Pt) in gold leaves with a LOD of 0.9 mg/kg, which is the lowest attained by totally non-destructive methods nowadays. The presence of Pt in gilded objects from Abydos and Byzantine mosaics provides vital information, as it indicates the alluvial origin of the gold for these examples. KW - Platinum Wavelength dispersive D2XRF KW - Gold Synchrotron XRF PY - 2016 DO - https://doi.org/10.1016/j.microc.2015.10.039 VL - 125 SP - 56 EP - 61 PB - Elsevier Science CY - Amsterdam AN - OPUS4-35777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -