TY - JOUR A1 - Giovannelli, F. A1 - Chen, Cong A1 - Díaz-Chao, P. A1 - Guilmeau, E. A1 - Delorme, F. T1 - Thermal conductivity and stability of Al-doped ZnO nanostructured ceramics N2 - Pure and Al-doped ZnO powders have been sintered by Spark Plasma Sintering. Al doping allows the ceramics to reach a relative density greater than 90% at a sintering temperature of 500°C. The morphology of powder nanoparticles impacts the final grain size of the sintered bulk compounds. A ceramic sintered from isotropic nanoparticles of 30 nm in diameter can reach an average grain size of 110 nm, whereas a ceramic sintered from platelets and isotropic nanoparticles exhibits an average grain size in the submicrometric range. The influence of ceramic grain size on the thermal conductivity has been investigated. It shows that substantial decrease of the grain size from several microns down to 100 nm reduces the thermal conductivity from 29.5 to 7.8 W/m K at 100°C. The stability of nanostructured ceramic has also been checked. After SPS, an annealing at 500°C in air also leads to grain growth. KW - Spark plasma sintering KW - Oxide KW - Thermal conductivity KW - Nanostructuring PY - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.07.032 SN - 0955-2219 VL - 38 IS - 15 SP - 5015 EP - 5020 PB - Elsevier Science CY - Amsterdam AN - OPUS4-45740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Delorme, F. A1 - Schoenstein, F. A1 - Zaghrioui, M. A1 - Flahaut, D. A1 - Allouche, J. A1 - Giovannelli, F. T1 - Synthesis, sintering, and thermoelectric properties of Co1-xMxO (M = Na, 0 ≤ x ≤ 0.07; M = Ag, 0 ≤ x ≤ 0.05) N2 - The structural and thermoelectric properties of Na- and Ag-substituted CoO dense ceramics have been investigated. X-ray diffraction shows that pure phase and Ag/CoO composites have been obtained for Na-doped and Ag-doped CoO, respectively. Raman spectroscopy shows an effect of Na dopants on the lattice disorder of CoO. The chemical composition, element distribution, and valence states of the samples have been characterized by Auger electron microscopy and X-ray photoelectron spectroscopy. Substitution of Co by 5 at. % Na enhances the power factor to 250 μWm−1 K-2 at 1000 K, similar to that of Ca3Co4O9. The corresponding thermal conductivity is also reduced to 3.55 W.m−1 K−1 at 1000 K. Consequently, Co0.95Na0.05O exhibits the best thermoelectric figure of merit (ZT), which is 0.07 at 1000 K. On the other hand, the substitution of Ag into CoO leads to the formation of CoO/Ag composites and deteriorates ZT values. KW - Thermoelectrics KW - CoO KW - Substitution KW - Spark plasma sintering KW - XPS PY - 2019 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.10.013 SN - 0955-2219 SN - 1873-619X VL - 39 IS - 2–3 SP - 346 EP - 351 PB - Elsevier Ltd. AN - OPUS4-46453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -