TY - JOUR A1 - Philipp, Rosemarie A1 - Lalere, B. A1 - Gantois, F. A1 - Sánchez, C. A1 - Sáez, A. A1 - Bebić, J. A1 - Banjanac, K. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Claramunt, A. V. A1 - Janko, P. A1 - Jotanovic, A. A1 - Hafner-Vuk, K. A1 - Buzoianu, M. A1 - Mihail, R. A1 - Fernández, M. M. A1 - Etcheverry, J. A1 - Mbithi Muendo, B. A1 - Muriira Karau, G. A1 - Silva, A. A1 - Almirón, F. A1 - Marajh, D. A1 - Makgatho, P. A1 - Visser, R. A1 - Alaskar, A. R. A1 - Alosaimi, A. A1 - Alrashed, M. A1 - Yılmaz, H. A1 - Ün, İ. A1 - Gündüz, S. A1 - Topal, K. A1 - Bilsel, M. A1 - Karasinski, J. A1 - Torres, J. T1 - Supplementary comparison study - measurement capabilities for the quantification of ethanol in water N2 - The accurate quantification of ethanol in water is essential for forensic applications such as blood and breath alcohol testing and for commercial applications such as the assessment of alcoholic beverages. The intercomparison EURAMET.QM-S14 is part of a capacity building project named ALCOREF “Certified forensic alcohol reference materials” that is running within the European Metrology Programme for Innovation and Research (EMPIR). The intercomparison should allow project partners and other interested National Metrology Institutes (NMIs) and Designated Institutes (DIs) to benchmark their analytical methods for the quantification of ethanol in water. The study plan was agreed by the European Association of National Metrology Institutes (EURAMET) Subcommittee Bio- and Organic Analysis (SCBOA) and the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) in February and April 2019, respectively. The intercomparison was coordinated by BAM. Two concentration levels relevant for the calibration and verification of evidential breath alcohol analysers were distributed to study participants. Fifteen institutes from 15 countries registered for the intercomparison and returned results. Participants mostly applied gas chromatography with flame ionisation detection (GC-FID) or mass spectroscopy (GC-MS), one participant used titrimetry and one participant employed a test bench for breath analyser calibration (“bubble train”). Participants did either in-house purity assessment of their commercial ethanol calibrants by Karl-Fischer titration, chromatographic methods, quantitative nuclear magnetic resonance spectroscopy (qNMR) and/or density measurements; or they used ethanol/water Certified Reference Materials (CRMs) from NMIs/DIs for calibration. CCQM OAWG agreed to use a consensus value from participants results that utilizes the reported uncertainties as Key Comparison Reference Value (KCRV). The Gaussian Random effects model with Hierarchical Bayesian solution (HB-REM) is a reasonable approach in this case. The KCRVs and Degrees of Equivalence (DoEs) were calculated with the NIST consensus builder version 1.2 Hierarchical Bayes procedure. Successful participation in the interlaboratory comparison has demonstrated the capabilities in determining the mass fraction of ethanol in aqueous matrices in the range 0.1 mg/g to 8 mg/g. Fourteen out of 15 participants have successfully quantified both samples, one participant successfully quantified only the lower-level (0.6 mg/g) sample. KW - Certified reference material KW - EURAMET KW - EMPIR KW - ALCOREF KW - Ethanol in water KW - Supplementary comparison PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08015 VL - 59 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-55889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderhalten, L. A1 - Silva, R. V. A1 - Morr, A. A1 - Wang, S. A1 - Smorodchenko, A. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Rodriguez-Sillke, Y. A1 - Kunkel, D. A1 - Hahndorf, J. A1 - Paul, F. A1 - Taupitz, M. A1 - Sack, I. A1 - Infante-Duarte, C. T1 - Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain N2 - Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. Materials and Methods: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. Results: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). Conclusions: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation. KW - Imaging KW - ICP-MS KW - Gadolinium KW - Contrast agent KW - Laser ablation KW - Brain KW - Multiple sclerosis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546910 DO - https://doi.org/10.1097/RLI.0000000000000884 SN - 0020-9996/22/0000–0000 VL - 57 IS - 10 SP - 677 EP - 688 PB - Wolters Kluwer N.V. CY - Alphen aan den Rijn, The Netherlands AN - OPUS4-54691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzoni, R. A1 - Curosu, I. A1 - Léonard, Fabien A1 - Paciornik, S. A1 - Mechtcherine, V. A1 - Silva, F. A. A1 - Bruno, Giovanni T1 - Combined mechanical and 3D-microstructural analysis of strain-hardening cement-based composites (SHCC) by in-situ X-ray microtomography N2 - The paper presents the results of a series of combined mechanical and in-situ morphological investigations on highstrength strain-hardening cement-based Composites (SHCC). Tension and compression experiments were performed in a CT scanner employing a dedicated mechanical testing rig. The in-situ microtomographic scans enabled correlating the measured specimen response with relevant microstructural features and fracture processes. The microstructural segmentation of SHCC was performed in the framework of Deep Learning and it targeted an accurate segmentation of pores, fibers and aggregates. Besides their accurate volumetric representation, these phases were quantified in terms of content, size and orientation. The fracture processes were monitored at different loading stages and Digital Volume Correlation (DVC) was employed to spatially map the strains and cracks in the specimens loaded in compression. The DVC analysis highlighted the effect of loading conditions, specimen geometry and material heterogeneity at the mesolevel on the strain distribution and fracture localization. KW - Digital Volume Correlation KW - High Strength Concrete KW - In-situ Computed Tomography KW - composites PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106139 VL - 136 SP - 106139 PB - Elsevier Ltd. AN - OPUS4-51054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brusamarello-Santos, L. C. C. A1 - Alberton, D. A1 - Valdameri, G. A1 - Camilios-Neto, D. A1 - Covre, R. A1 - Lopes, K. d. P. A1 - Zibetti Tadra-Sfeir, M. A1 - Faoro, H. A1 - Adele Monteiro, R. A1 - Barbosa-Silva, A. A1 - Broughton, William John A1 - Oliveira Pedrosa, F. A1 - Wassem, R. A1 - de Souza, E.M. T1 - Modulation of defence and iron homeostasis genes in rice roots by the diazotrophic endophyte Herbaspirillum seropedicae N2 - Rice is staple food of nearly half the world’s population. Rice yields must therefore increase to feed ever larger populations. By colonising rice and other plants, Herbaspirillum spp. stimulate plant growthand productivity. However the molecular factors involved are largely unknown. To further explore this interaction, the transcription profiles of Nipponbare rice roots inoculated with Herbaspirillum seropedicae were determined by RNA-seq. Mapping the 104 million reads against the Oryza sativa cv. Nipponbare genome produced 65 million unique mapped reads that represented 13,840 transcripts each with at least two-times coverage. About 7.4% (1,014) genes were differentially regulated and of these 255 changed expression levels more than two times. Several of the repressed genes encoded proteins related to plant defence (e.g. a putative probenazole inducible protein), plant disease resistance as well as enzymes involved in flavonoid and isoprenoid synthesis. Genes related to the synthesis and efflux of phytosiderophores (PS) and transport of PS-iron complexes were induced by the bacteria. These data suggest that the bacterium represses the rice defence system while concomitantly activating iron uptake. Transcripts of H. seropedicae were also detected amongst which transcripts of genes involved in nitrogen fixation, cell motility and cell wall synthesis were the most expressed. KW - Herbaspirillum seropedicae KW - Pathogen KW - Rice KW - qPCR KW - Genome PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-490122 DO - https://doi.org/10.1038/s41598-019-45866-w SN - 2045-2322 VL - 9 SP - 10573-1 EP - 10573-15 PB - Nature CY - London AN - OPUS4-49012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa e Silva, A. A1 - Coelho, D. A1 - Rizzo, F. A1 - Kranzmann, Axel T1 - Simulation of Fe-Cr-X alloy exposed to an oxyfuel combustion atmosphere at 600 °C N2 - In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is. KW - CALPHAD approach KW - Corrosion KW - Decarburization KW - DICTRA modeling KW - Experimental kinetics KW - Iron alloys KW - Kinetics KW - Multicomponent diffusion KW - Steel PY - 2016 DO - https://doi.org/10.1007/s11669-015-0421-3 SN - 1547-7037 SN - 1863-7345 VL - 37 IS - 1 SP - SI, 19 EP - 24 PB - Springer US AN - OPUS4-40110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oliveira, D.F. A1 - Moreira, E.V. A1 - Silva, A.S.S. A1 - Rabello, J.M.B. A1 - Lopes, R.T. A1 - Pereira, M.S. A1 - Zscherpel, Uwe T1 - Application of the digital radiography in weld inspection of gas and oil pipelines N2 - The aim of this work is to evaluate the feasibility of the direct radiography on weld inspection in oil pipelines and gas pipeline during the manufacturing process. To that, 6 specimens with 6 different thickness and varied height of reinforced weld with 5 different kinds of defects were made. All samples were radiographied using Class I films and flat panel. For all specimens the inspection length was 8''. Thus, with the flat panel the detector-to-object distance varied so that it may adequate to several diameters of the tubes. The detector-to-object distance was calculated based on the physical size of the detector taking into consideration a safe distance between the tube curvature and the flat panel extremities, keeping the lowest possible magnification factor so that it could be obtained the length of the inspection. Images with 6 integration time for each experimental arrangement were obtained. The images obtained with the Flat Panel/YXLON system were analyzed according to their quality by using the Contrast parameters (essential wire) (DNV 2007/ IS0 12096 – with reinforcement and ISO 10893-7 – basis material), Basic Spatial Resolution – BSR (ISO 10893-7) and normalized signal-to-noise ratio - SNRN (ISO 10893-7) and by detectability using as reference the conventional radiography. The results showed that for all thickness, the exposure time used to meet the image quality requirements were below with direct radiography. However the BSR were not reached for thickness of 4.85, 6.40 and 9.67 mm, therefore the compensation principle established by ISO 10893-7 was considered, that is, one more contrast wire for a less wire pair. The digital technique proved to be more sensitive to real defects found on welds than the conventional technique. Then it can be conclude that the digital radiography utilizing the flat panel can be applicable to the oil and gas segment with advantages over conventional technique as to quality aspects, productivity, environment, safety and health. T2 - 10th European conference on non-destructive testing CY - Moscow, Russia DA - 2010-06-07 KW - Zerstörungsfreie Prüfung KW - Durchstrahlungsprüfung KW - Digitale Radiologie PY - 2010 UR - http://www.ndt.net/article/ecndt2010/reports/1_04_01.pdf IS - Paper 4.02.18 SP - 1 EP - 11(?) AN - OPUS4-22502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -