TY - CONF A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Chen, Y.-F. A1 - Contreras Jaimes, A. T1 - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas (GlasDigital) N2 - Das Projekt GlasDigital wurde im allgemeinen vorgestellt, sowie die einzelnen Zwischenstände der verschiedenen Arbeitspakete aller Projektpartner präsentiert. Die allgemeine Porjektvorstellung ist auf deutsch. Die Zwischenstände der Arbeitsinhalte sind auf englisch. T2 - PMD Vollversammlung CY - Berlin, Germany DA - 03.11.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage KW - ML KW - Ontologie KW - Digitaler Zwilling KW - Bildanalyse PY - 2022 AN - OPUS4-56491 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, A. A1 - Goecke, S.F. A1 - Rethmeier, Michael T1 - Laser beam oscillation for fillet welding JF - Welding in the world N2 - In today’s automotive frame-and-body construction, laser welds are typically carried out as square butt welds in lap joints. These welds are increasingly produced by remote laser welding optics with working distances of 500 mm and more. This enables simple path programming because clamping devices are traversed over and therefore low cycle times with improved productivity is achieved. However, workpiece tolerances lead to part displacements and varying joint positions over time. These displacements have to be acted against by appropriate flange length that contain for positioning deviations. Using this concept, aspired light-weight optimisations, e.g. reducing flange length, are difficult to achieve. By using seam tracking sensors, part tolerances are automatically detected and counteracted for. In addition, joint edge detection allows constructive changes on the type of weld. Fillet welds reduce flange lengths', improve force flow and open up possibilities for visual quality monitoring. Apart from that, vertical displacements in the form of height tolerances still occur. This needs consideration by adapting the set of welding parameter to the current welding situation. In this respect, one main welding parameter is the lateral beam offset to the upper sheet. Since body-in-white welding applications mainly comprise of zinc-coated steel sheets, special requirements for the welding process are given. Especially zero-gap-welding and welding of joints with gaps larger than 0.2 mm are critical. Using a laser beam oscillation process can stabilise these situations. Approaches to finding parameter sets are presented in this paper. KW - Laser beams KW - Welding KW - Fillet welds KW - Gap KW - Process procedures KW - Monitoring systems PY - 2014 DO - https://doi.org/10.1007/s40194-014-0165-4 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 6 SP - 865 EP - 872 PB - Springer CY - Oxford AN - OPUS4-32075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, A. A1 - Goecke, S.F. A1 - Rethmeier, Michael T1 - Laser beam oscillation welding for automotive applications JF - Welding in the World N2 - Laser beam oscillation, applied one- or two-dimensional to the actual welding process, influences the welding process in terms of compensation of tolerances and reduction of process emissions like spatter and melt ejections that occur in industrial applications, such as in body-in-white manufacturing. If the welding process could be adapted to these tolerances by the momentarily demanded melt pool width to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing, laser welding would become more robust. However, beam oscillation results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies which are adjusted to the joining situation can bridge gaps to approximately 0.6 mm at metal sheet thickness of 0.8 mm. However, the complex behaviour of the melt pool has to be considered to generate proper welding results. This work puts emphasis on showing aspects of beam oscillation in fillet welding in lap joints. KW - Automotive application KW - Melt pool dynamics KW - Adaptive welding beam oscillation KW - Laser welding KW - Gap bridging PY - 2018 DO - https://doi.org/10.1007/s40194-018-0625-3 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1039 EP - 1047 PB - Springer AN - OPUS4-45774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühler, T. A1 - Helsch, G. A1 - Heinrich, J.G. A1 - Yao, Dongxu A1 - Gräf, S. A1 - Müller, F.A. A1 - Günster, Jens T1 - Strategies for the selective volume sintering of ceramics JF - Journal of materials research N2 - The present study is dealing with the basic physics for a novel way to generate a free-formed ceramic body, not like common layer by layer, but directly by Selective Volume Sintering (SVS) in a compact block of ceramic powder. To penetrate with laser light into the volume of a ceramic powder compact it is necessary to investigate the light scattering properties of ceramic powders. Compared with polymers and metals, ceramic materials are unique as they offer a wide optical window of transparency. The optical window typically ranges from below 0.3 up to 5 µm wave length. In the present study thin layers of quartz glass (SiO2) particles have been prepared. As a function of layer thickness and the particle size, transmission and reflection spectra in a wave length range between 0.5 and 2.5 µm have been recorded. Depending on the respective particle size and by choosing a proper relation between particle size and wave length of the incident laser radiation, it is found that light can penetrate a powder compact up to a depth of a few millimeters. With an adjustment of the light absorption properties of the compact the initiation of sintering in the volume of the compact is possible. KW - Additive Manufacturing PY - 2014 DO - https://doi.org/10.1557/jmr.2014.174 SN - 0884-2914 VL - 29 IS - 17 SP - 2095 EP - 2099 PB - Materials Research Society CY - Warrendale, Pa. AN - OPUS4-32544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -