TY - JOUR A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Validation of novel ultrasonic phased array borehole probe by using simulation and measurement JF - Sensors N2 - Low-frequency ultrasonic testing is a well-established non-destructive testing (NDT) method in civil engineering for material characterization and the localization of cracks, reinforcing bars and delamination. A novel ultrasonic borehole probe is developed for in situ quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The aim is to examine the sealing structures made of salt concrete for any possible cracks and delamination and to localize built-in components. A prototype has been developed using 12 individual horizontal dry point contact (DPC) shear wave transducers separated by equidistant transmitter/receiver arrays. The probe is equipped with a commercially available portable ultrasonic flaw detector used in the NDT civil engineering industry. To increase the sound pressure generated, the number of transducers in the novel probe is increased to 32 transducers. In addition, the timed excitation of each transducer directs a focused beam of sound to a specific angle and distance based on the previously calculated delay time. This narrows the sensitivity of test volume and improves the signal-to-noise ratio of the received signals. In this paper, the newly designed phased array borehole probe is validated by beam computation in the CIVA software and experimental investigations on a half-cylindrical test specimen to investigate the directional characteristics. In combination with geophysical reconstruction methods, it is expected that an optimised radiation pattern of the probe will improve the signal quality and thus increase the reliability of the imaging results. This is an important consideration for the construction of safe sealing structures for the safe disposal of radioactive or toxic waste. KW - Ultrasound KW - Phased array KW - Concrete KW - Borehole PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565722 DO - https://doi.org/10.3390/s22249823 SN - 1424-8220 VL - 22 IS - 24 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Using the Corner Reflection for Depth Evaluation of Surface Breaking Cracks in Concrete by Ultrasound JF - Journal of Nondestrctive Evaluation N2 - The corner echo is a well-known effect in ultrasonic testing, which allows detection of surface breaking cracks with predominantly perpendicular orientation to the surface as, for example, corrosion cracks in metal pipes or shafts. This echo is formed by two planes, the surface of the crack and the surface which the crack breaks. It can also be classified as a half-skip method, since a reflection of the pulse occurs on the backwall before the reflection at the defect takes place. In combination with the diffraction from the crack tip, the corner echo also allows crack sizing. As shown in this paper, the corner reflection can be used in civil engineering for nondestructive inspection of concrete. Commercially available low frequency ultrasonic arrays with dry point contact sources generate SH transversal waves with sufficient divergence of the sound field in order to detect corner reflections. Ultrasonic line-scans and area-scans were acquired with a linear array on flat concrete specimens, and the data were reconstructed by the Synthetic aperture focusing technique. If the angles and the area of reconstruction are chosen accordingly, the corner echo reflection can be distinguished from other ultrasonic information. The corner echo can thus be used as a method for deciding whether a crack is a partial-depth crack or a full-depth crack and thus for obtaining a statement about crack depth. This paper presents corresponding experimental results obtained on concrete specimens with artificial test defects and cracks induced under controlled conditions. KW - Ultrasound KW - Crack depth KW - Concrete KW - Corner echo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574631 DO - https://doi.org/10.1007/s10921-023-00956-8 SN - 0195-9298 VL - 42 IS - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-57463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Kudla, W. T1 - Ultrasonic quality assurance for underground salt shotcrete sealing structures in Teutschenthal mine, Germany T2 - International Symposium Non-Destructive Testing in Civil Engineering (NDTCE 2022) N2 - Underground sealing structures are necessary to seal radioactive or toxic waste in underground repositories. A special version of MgO concrete is used in the mine in Teutschenthal and applied at a large-scale test with the aim to provide a low permeability barrier. The test structures (up to 10 m long) were created by shotcreting. Besides destructive tests, non-destructive ultrasonic measurements have been evaluated for quality assurance to monitor potential anomalies such as cracks, concrete inhomogeneities, and delamination. We show results of ultrasonic measurements with a multi-transducer system used at the front and from the side of the concrete structure. Images are obtained by synthetic aperture focusing techniques. The boundaries between concreting sections are not visible in the ultrasonic images systematically so that a successful concreting is assumed, which is confirmed by the low permeabilities observed. Several reflectors up to a depth of 1.2 m are identified and interpreted as potential damages in the concrete. Phase analysis of prominent reflectors reveal a negative impedance contrast thus indicating air filled voids, cracks or delamination. Boreholes through some of the identified reflectors are used to verify the results from ultrasonic measurements. Additionally, an experiment with incorporated artificial defects was undertaken to analyse the reliability of the applied methods. Overall, the conducted tests show the potential of ultrasonic measurements to detect critical anomalies. Despite challenges at small-scale structures (cm-order), large-scale anomalies can be identified. Consequently, implementing ultrasonic monitoring during and after the construction of concrete sealing structures has shown its potential as a tool for quality assurance, but needs further development and validation. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Ultrasonic imaging KW - Magnesia shotcrete KW - Underground KW - Engineered barrier systems PY - 2022 UR - https://www.ndt.net/events/proceedings/topic.php?eventID=292&TopicID=27209 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-55824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Hofmann, M. A1 - Kudla, W. T1 - Ultrasonic quality assurance at magnesia shotcrete sealing structures JF - Sensors N2 - Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. Imaging of internal structures (backwall, boreholes) and defects, such as delamination, has successfully been achieved in the shotcrete. Additionally, detailed information about the potential cause of selected reflectors are obtained by phase analysis. In several test blocks of various sizes, no consistent concrete section boundaries have been found by ultrasonic imaging, which was verified by subsequent drilling and complementary tests. An experiment with artificial defects imitating cracks, air-filled voids, and material with lower density has been challenging and shows the limitations of the current methods. Although significant defects, such as a large delamination, are reliably identified, several smaller defects are not identified. Generally, ultrasonic imaging provides a suitable base as a mean for quality assurance during and after the construction of sealing structures. However, further developments are required to enhance the reliability of the method and a full validation is still pending. Still, the method has potential to increase the safety of nuclear waste repositories. KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Underground KW - Shotcrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563170 DO - https://doi.org/10.3390/s22228717 SN - 1424-8220 VL - 22 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 AN - OPUS4-47676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst ED - Gabrijel, Ivan ED - Grosse, Christian ED - Skazlić, Marijan T1 - Ultrasonic monitoring of structural concrete elements T2 - Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019) Novel Methods for Characterization of Materials and Structures N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.3.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 SN - 978-2-35158-227-5 SP - 1 EP - 11 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-47677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of full-scale load experiments N2 - Previous work has shown that ultrasonic monitoring using externally applied or embedded transducers and imaging methods based on coda wave interferometry are able to detect subtle changes in concrete elements. In this study, a limited number of embedded transducers has been used to monitor changes in several 12 m long two-span concrete beams subjected to point or linear loads until failure. The ultrasonic results showed the high sensitivity to stress changes and the nonlinear character of the associated effects. However, the ultrasonic features showed a very good correlation to several conventional monitoring parameters. For higher loads (significant amount of cracking), the technique had to be modified to cope with large wave velocity variations and high decorrelation compared to the reference signal. Using a very simple imaging procedure, the 2D stress field inside the beam has been visualized including inhomogeneities and artifact at places where cracking occurred at higher loads. The technique has the potential to be included in real time monitoring systems. T2 - ASNT SMT/NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.8.2018 KW - Concrete KW - Monitoring KW - Ultrasound KW - Coda wave interferometry PY - 2018 AN - OPUS4-45827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of concrete constructions using embedded transducers JF - The e-journal of nondestructive testing & ultrasonics N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil Engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. T2 - International Symposium on Structural Health Monitoring and Nondestructive Testing CY - Saarbrücken, Germany DA - 4.10.2018 KW - Ultrasound KW - Monitoring KW - Concrete PY - 2018 UR - http://www.ndt.net/?id=23542 SN - 1435-4934 VL - 23 IS - 12 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-46842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Mielentz, Frank A1 - Effner, Ute A1 - Maack, Stefan A1 - Scott, David A1 - Villalobos, Salvador T1 - Ultrasonic methods for quality assurance and condition assessment in nuclear concrete structures – lessons learned N2 - Ultrasonic non-destructive testing methods have found various applications in quality assurance and condition assessment of nuclear concrete structures. This includes but is not limited to the localization of construction features (thickness measurements, reinforcement, tendon ducts, and others) and damage detection (e. g. corrosion or cracks). However, there are still limitations, e. g. limited penetration depth and resolution, issues when testing hybrid steel/concrete structures as well as absence of standards and regulations. This presentation will show progress in some of these issues and will focus on advanced instrumentation and validation of ultrasonic NDT for concrete structures. Ultrasonic echo testing has been limited to a penetration depth of less than one meter in reinforced concrete. The development of the LAUS (Large Aperture Ultrasonic System), using a large array of ultrasonic transducers and wider offsets between transmitter and receiver, allows to reach up to 5 m in reinforced concrete and 9 m in unreinforced concrete. This capability has been demonstrated by collecting data from an engineered salt concrete barrier in an underground nuclear waste storage facility. Due to an increasingly competitive environment, commercial manufacturers will continue to develop equipment with enhanced penetration and/or increased resolution. To quantify the capabilities and reliability of ultrasonic tests, validation mockups with engineered flaws are required. EPRI and BAM have built a large-scale mockup at a test site close to Berlin (BAM-TTS, Horstwalde) using a design which is repeated at other places. This presentation will also cover the methods deployed on engineered flaws and the repeatability of the test results. T2 - NDE in Nuclear CY - Charlotte, NC, USA DA - 25.7.2019 KW - Concrete KW - Nuclear Structures KW - Ultrasound PY - 2019 AN - OPUS4-48690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic methods for concrete: To boldly see, what we have not seen before N2 - This keynote talk at NDE 2019 discusses specific progress in ultrasonic testing of concrete structures. A deep penetration instrument (LAUS) is introduced as well as advanced imaging methods adopted from geophysics and new approaches to ultrasonic monitoring. T2 - NDE 2019 CY - Bangalore, India DA - 05.12.2019 KW - NDT KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2019 AN - OPUS4-50170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büttner, C. A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Friedrich, C. T1 - Ultrasonic Echo Localization Using Seismic Migration Techniques in Engineered Barriers for NuclearWaste Storage JF - Journal of Nondestructive Evaluation N2 - In the framework of non-destructive-testing advanced seismic imaging techniques have been applied to ultrasonic echo data in order to examine the integrity of an engineered test-barrier designed to be used for sealing an underground nuclear waste disposal site. Synthetic data as well as real multi-receiver ultrasonic data acquired at the test site were processed and imaged using Kirchhoff prestack depth migration reverse time migration (RTM). In general, both methods provide a good Image quality as demonstrated by various case studies, however deeper parts within the test barrier containing inclined reflectors were reconstructed more accurately by RTM. In particular, the image quality of a specific target reflector at a depth of 8 m in the test-barrier has been significantly improved compared to previous investigations using synthetic aperture Focusing technique, which justifies the considerable computing time of this method. KW - Radioactive waste disposal KW - Engineered barrier KW - Ultrasound KW - Imaging KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537956 DO - https://doi.org/10.1007/s10921-021-00824-3 SN - 0195-9298 VL - 40 IS - 4 SP - 1 EP - 10 PB - Springer AN - OPUS4-53795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. ED - Yokota, H. ED - Frangopol, D. W. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures T2 - Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2021 SN - 978-0-367-23278-8 DO - https://doi.org/10.1201/9780429279119-345 SP - 2525 EP - 2531 PB - Taylor & Francis CY - London, UK AN - OPUS4-54168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. T2 - IABMAS 2020 CY - Online meeting DA - 11.04.2021 KW - Ultrasound KW - Monitoring KW - Coda wave interferometry KW - Concrete KW - Bridges PY - 2021 AN - OPUS4-54167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst ED - Rizzo, P. ED - Milazzo, A. T1 - Towards Monitoring of Concrete Structures with Embedded Ultrasound Sensors and Coda Waves – First Results of DFG for CoDA T2 - Lecture Notes in Civil Engineering. European Workshop on Structural Health Monitoring. Special Collection of 2020 Papers - Volume 1 N2 - Due to the importance of reinforced concrete structures for modern society, damage assessment during the entire life-cycle of such structures has become a special interest in non-destructive testing. Using embedded ultrasound sensors in combination with other measurement methods, numerical modeling and self-made data collectors, tailored specifically for monitoring tasks, the German research group DFG FOR CoDA aims to investigate and develop novel methods for damage detection and rapid model updating in reinforced concrete structures. In the first stage of the project, besides the development of custom-built, low-cost data collectors, ultrasonic transducers are embedded in a large, reinforced concrete specimen on a BAM test site near Berlin. In this experiment, the influence of changing environmental conditions (mainly temperature) on the ultrasound signal is investigated using coda-wave interferometry. The results show a correlation between changes in temperature and ultrasonic velocity. Such changes must be taken into consideration in a long-term monitoring setup to distinguish between reversible and permanent changes. By correcting the data using a linear relation between concrete temperature and velocity change to remove the seasonal trends and by low-pass filtering the data to remove daily variations can remove most of the temperature influence on the ultrasound measurements. KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Embedded sensors KW - Structural health monitoring PY - 2021 SN - 978-3-030-64593-9 SN - 978-3-030-64594-6 DO - https://doi.org/10.1007/978-3-030-64594-6_27 VL - 127 SP - 266 EP - 275 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-52012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - The LAUS: First applications of a new system for ultrasonic imaging of very concrete structures N2 - The LAUS (Large Aperture Ultrasonic System) has been developed to image very thick concrete structures, which are not accessible for commercial systems. The device and the corresponding software is the result of joint research of BAM, an ultrasonic instrument manufacturer and University of Kassel, Germany. It consists of 12 separate arrays of 32 point-contact shear wave transducers each, which can be deployed in flexible configurations. Each array is combined with battery and transmitter, receiver and wireless communication electronics. Three case histories are presented. First the system was deployed on a 5-m thick heavily reinforced foundation slab. The reflection of the slab’s bottom was imaged clearly. In addition, a multiple reflection was registered, thus giving hope that even thicker elements might be imaged by the instrument. Second, the LAUS was used to investigate a massive bridge girder where a heavy rainstorm during concreting had led to imperfections that were visible after removing the formwork was removed. The LAUS could image tendon ducts in 1.8m depth and the backwall closely behind them. Some limited areas showed blurred reflections and were checked by drill holes; these areas were affected by diffuse damage which could be repaired by injections. Third, a large retaining wall was checked for thickness. Meanwhile, the LAUS has been used in underground waste deposits (nuclear and other) for quality assurance of sealing plugs. A confirmed penetration depth of about 7 m has been reached. T2 - ASNT SMT/NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.8.2018 KW - LAUS KW - Ultrasound KW - Imaging KW - Concrete PY - 2018 AN - OPUS4-45828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Niederleithinger, Ernst A1 - Hindersmann, Iris T1 - The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique JF - Structural Health Monitoring N2 - This article presents a unique method of installing a special type of embedded ultrasonic transducers inside a 36-m-long section of an old bridge in Germany. A small-scale load test was carried out by a 16 ton truck to study the temperature and load influence on the bridge, as well as the performance of the embedded transducers. Ultrasonic coda wave interferometry technique, which has high sensitivity in detecting subtle changes in a heterogeneous medium, was used for the data evaluation and interpretation. The separation of two main influence factors (load effect and temperature variation) is studied, and future applications of wave velocity variation rate Φ for structural health condition estimation are discussed. As a preliminary research stage, the installation method and the performance of the ultrasonic transducer are recognized. Load- and temperature-induced weak wave velocity variations are successfully detected with a high resolution of 10−4%. The feasibility of the whole system for long-term structural health monitoring is considered, and further research is planned. KW - Ultrasound KW - Bridge KW - Monitoring KW - coda wave interferometry KW - embedded PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527978 DO - https://doi.org/10.1177/14759217211014430 SN - 1475-9217 VL - 21 IS - 3 SP - 913 EP - 927 PB - SAGE AN - OPUS4-52797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Seismic methods to test concrete strcutures N2 - Seismic methods are increasingly used to improve ultrasonic imaging and monitoring of concrete. At BAM, we are research mainly the use of Reverse Time Migration to get better images from ultrasonic echo data of thick, complex concrete structures. Coda wave interferometry is used to detect subtle changes in concrete constructions, e. g. using embedded ultasonic transducers. T2 - Geophysikalisches Seminar der Universität Potsdam CY - Potsdam,. Germany DA - 25.01.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - Imaging PY - 2019 AN - OPUS4-47302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Sturm, Patrick A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Hofmann, Detlef A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - SealWasteSafe: materials technology, monitoring techniques, and quality assurance for safe sealing structures in underground repositories T2 - Safe Nuclear Waste Disposal N2 - Within the project SealWasteSafe, we advance construction materials and monitoring concepts of sealing structures applied for underground disposal of nuclear or toxic waste. As these engineered barriers have high demands concerning integrity, an innovative alkali-activated material (AAM) is improved and tested on various laboratory scales. This AAM has low reaction kinetics related to a preferential slow release of the heat of reaction in comparison to alternative salt concretes based on Portland cement or magnesium oxychloride cements. Hence, crack formation due to thermally induced strain is reduced. After successful laboratory scale analysis (Sturm et al., 2021), the AAM is characterised on a larger scale by manufacturing test specimens (100–300 L). Conventional salt concrete (DBE, 2004) and the newly developed AAM are compared using two specimen geometries, i.e. cylindrical and cuboid. A comprehensive multisensor monitoring scheme is developed to compare the setting process of AAM and salt concrete for these manufactured specimens. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete, enable wireless access to temperature and humidity measurements and are compared to conventional cabled systems. Additionally, fibre-optic sensors (FOS) are embedded to record strain, but also have potential to record temperature and moisture conditions. Part of this project aims at demonstrating the high reliability of sensors and also their resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. Further technical improvements were implemented so that first results clearly show the scalability of the setting process from previous small-scale AAM experiments and particularly the high potential of the newly developed approaches. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, potential cracks and delamination. On the one hand, both active and passive ultrasonic measurements complement the results obtained from the multisensor monitoring scheme for the produced specimens. On the other hand, the unique large aperture ultrasonic system (LAUS) provides great depth penetration (up to nearly 10 m) and can thus be applied at in situ sealing structures built as a test site in Morsleben by the Federal Company for Radioactive Waste Disposal (Bundesgesellschaft für Endlagerung, BGE) as shown by Effner et al. (2021). An optimised field lay-out identified from forward modelling studies and advanced imaging techniques applied to the measured data will further improve the obtained results. To characterise the inside of the test engineered barrier and achieve a proof-of-concept, an ultrasonic borehole probe is developed to enable phased arrays that can further improve the detection of potential cracks. Modelling results and first analysis of semispherical specimens confirmed the reliability of the directional response caused by the phased arrays of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe improves the construction material, multisensor monitoring concepts and ultrasonics for quality assurance. This will help to develop safe sealing structures for nuclear waste disposal. The outcomes are particularly valuable for salt as a host rock but partly also transferrable to alternative conditions. T2 - Safe ND Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 10.11.2021 KW - Borehole probe KW - SealWasteSafe KW - Engineered barrier KW - Materials technology KW - Monitoring KW - AAM KW - Ultrasound PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539172 DO - https://doi.org/10.5194/sand-1-127-2021 VL - 1 SP - 127 EP - 128 PB - Copernicus AN - OPUS4-53917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Epple, Niklas T1 - ridge Monitoring by Ultrasonic Coda Wave Interferometry N2 - The built infrastructure ages and requires regular inspection and, when in doubt, monitoring. To ensure that older concrete bridges showing signs of deterioration can be used safely, several innovative monitoring tools have been introduced, including but not limited to optical, fiber-optic, or acoustic emission techniques. However, there are gaps in the portfolio. A sensing technique that covers a wide range of damage scenarios and larger volumes, while still being sensitive and specific, would be beneficial. For about 15 years, research has been conducted on ultrasonic monitoring of concrete structures that goes beyond the traditional ultrasonic pulse velocity test (PV test), mostly using a very sensitive data evaluation technique called coda wave interferometry. At BAM we have developed sensors and instrumentation specifically for this method. We have instrumented a 70-year-old, severely damaged prestressed concrete bridge in Germany in addition to a commercial monitoring system. We have now collected data for almost 3 years. We can show that we can provide information about the stress distribution in the bridge. We have also been able to confirm that there has been no significant additional damage to the bridge since the installation. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2023 AN - OPUS4-59346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Landis, E. A1 - Hassfras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - Relating ultrasonic signals to concrete microstructure using X-ray computed tomography JF - Construction and Building Materials N2 - With a goal to improve our understanding of the relationships between microstructural features and ultrasonic signal behavior, concrete specimens of varying water-to-cement ratio were imaged using X-ray computed tomography (CT), and subsequently subjected to ultrasonic testing. From the CT scans, measurements were made of cement paste density and number of interfaces. Ultrasonic signals produced using a through-transmission configuration were analyzed and fit to a diffusion model to separate absorption from scattering attenuation. The results showed that at the frequencies tested, ultrasonic dissipation rate correlated weakly with paste density, while diffusivity correlated well with number of interfaces, but only if entrained air is considered separately. Cement paste density was found to be very well predicted by diffusivity, leading to a clear power-law relationship between diffusivity and compressive strength. KW - Concrete KW - Ultrasound KW - Strength KW - CT PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2020.121124 SN - 0950-0618 VL - 268 SP - Paper 121124, 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-52073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Herbrand, M. A1 - Müller, M. T1 - Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams JF - Sensors N2 - Ultrasonic transmission measurements have been used for decades to monitor concrete elements, mostly on a laboratory scale. Recently, coda wave interferometry (CWI), a technique adapted from seismology, was introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete laboratory samples and even large structural elements without having a transducer directly at the place where the change is taking place. Here, several load tests until failure on large posttensioned concrete beams have been monitored using networks of embedded transducers. To detect subtle effects at the beginning of the experiments and cope with severe changes due to cracking close to failure, the coda wave interferometry procedures had to be modified to an adapted step-wise approach. Using this methodology, we were able to monitor stress distribution and localize large cracks by a relatively simple technique. Implementation of this approach on selected real structures might help to make decisions in infrastructure asset management. KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda wave interferometry KW - Embedded transducers PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452328 DO - https://doi.org/10.3390/s19010147 SN - 1424-8220 VL - 19 IS - 1 SP - Article 147, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-45232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Murtuz, A. K. M. G. A1 - Hafiz, A. A1 - Dusicka, P. A1 - Niederleithinger, Ernst ED - Gabrijel, I. ED - Grosse, C. ED - Skazlić, M. T1 - Post-earthquake damage evaluation of concrete structures using ultrasonic monitoring: A proof-of concept laboratory study T2 - Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019) Novel Methods for Characterization of Materials and Structures N2 - In earthquake-prone regions such as the Pacific Northwest, damage assessment tools are needed to enable safety evaluations to support recovery. Currently, damage assessment is performed primarily by visual inspection and is often impossible for structural members that are inaccessible, such as deep foundations or interior members hidden by cladding. This study explores the possibility of using embedded ultrasonic transducers to monitor reinforced concrete members for damage progression under earthquake loading. A novel methodology is proposed where changes in the member condition due to an increase in the earthquake-type loading of a full-scale column-foundation specimen are correlated with changes in the recorded ultrasonic waveforms. The discussed preliminary analysis of the ultrasonic signals is based on wave propagation velocity, changes in the coda wave portion, and maximum amplitude of the signals. Three embedded transducers were used to continuously monitor the laboratory specimen during destructive testing. This paper provides an overview of the proposed methodology, outlines the laboratory experiment, and discusses some preliminary observations. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.3.2019 KW - Concrete KW - Monitoring KW - Ultrasound KW - earthquake PY - 2019 SN - 978-2-35158-227-5 DO - https://doi.org/10.1007/978-3-031-07258-1_84 SP - 112 EP - 119 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-47679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Imani, A. A1 - Niederleithinger, Ernst A1 - Brown, M. C. T1 - Nondestructive Evaluation of Bridges without Structural Plans for Load Rating Purposes N2 - According to the NBI database, more than 21,000 in-service U.S. bridges lack sufficient structural documentation necessary for analytical load rating. Among these are a significant proportion of older prestressed concrete bridges. Given the lack of documentation on the reinforcing layout, such structures cannot be load rated analytically and are often subject to engineering judgement as the basis for rating. Otherwise, the typical approach for load rating such bridges is to conduct costly proof load testing and destructive probing together with making conservative assumptions. Therefore, any improvement to current practices will benefit DOTs and taxpayers alike. Accurately reconstructed 3D images of the girders to reflect the internal reinforcement could mitigate the need for costly, if not impractical, destructive testing and proof load testing, and help reduce dependency on conservative assumptions. This study examines a comprehensive NDE approach using ultrasonic tomography and GPR to aid in gathering structural information for load rating purposes. Different types of AASHTO and hollow core girders were tested. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Radar KW - Bridges KW - Load rating PY - 2022 AN - OPUS4-56356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Niederleithinger, Ernst ED - Faix, O. T1 - Nondestructive assessment and imaging methods for internal inspection of timber. A review. JF - Holzforschung N2 - This paper reviews state-of-the-art in nondestructive testing (NDT) and semidestructive testing (SDT) methods applicable for imaging the condition of structural timber. Both NDT and SDT imaging reveal defects, damages, and decay, while the extent of wood decay can also be quantified. Combined with an appropriate data interpretation concerning the internal defects, the mechanical properties of the material can also be assessed. The possibilities and limitations of the most relevant individual NDT and SDT methods, also in combination with each other, are outlined and compared. To facilitate comparison, many observations are reported based on the same test specimen. KW - Drilling resistance KW - Electrical resistivity KW - Radar KW - Radiography KW - Sonic stress wave KW - Ultrasound KW - Non destructive testing KW - Timber structure PY - 2018 DO - https://doi.org/10.1515/hf-2017-0122 SN - 0018-3830 SN - 1437-434X VL - 72 IS - 6 SP - 467 EP - 476 PB - De Gruyter CY - Berlin AN - OPUS4-44445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Non-destructive Evaluation for Nuclear Power Plant concrete infrastructure N2 - The ageing and decommissioning of nuclear concrete infrastructure (e. g. safety containments) as well as the building and closure of waste repositories gives new challenges to non-destructive testing. For example, the quality assurance of very thick concrete structures is beyond the limitations of commercial ultrasonic instrumentation. The presentation introduces typical testing tasks and the application of state of the art NDT techniques. In addition, it describes some new developments in ultrasonic testing and monitoring. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. T2 - Aalto University Special Guest Seminar CY - Espoo, Finland DA - 25.10.2018 KW - Ultrasound KW - Concrete KW - Nuclear PY - 2018 AN - OPUS4-46425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Chakraborty, J. A1 - Niederleithinger, Ernst T1 - Noise Reduction for Improvement of Ultrasonic Monitoring Using Coda Wave Interferometry on a Real Bridge JF - Journal of Nondestructive Evaluation N2 - Reinforced concrete bridges are iconic parts of modern infrastructure. They are designed for a minimum service life of 100 years. However, environmental factors and/or inappropriate use might cause overload and accelerate the deterioration of bridges. In extreme cases, bridges could collapse when necessary maintenance lacks. Thus, the permanent monitoring for structure health assessment has been proposed, which is the aim of structural health monitoring (SHM). Studies in laboratories have shown that ultrasonic (US) coda wave interferometry (CWI) using diffuse waves has high sensitivity and reliability to detect subtle changes in concrete structures. The creation of micro-cracks might be recognized at an early stage. Moreover, large-volume structures can be monitored with a relatively small number of US transducers. However, it is still a challenge to implement the CWI method in real SHM practical applications in an outdoor environment because of the complex external factors, such as various noise sources that interfere with the recorded signals. In this paper, monitoring data from a 36-m long bridge girder in Gliwice, Poland, instrumented with embedded US transducers, thermistors, and vibrating wire strain gauges, is presented. Noise estimation and reductionmethods are discussed, and the influence of traffic, as well as temperature variation, are studied. As a result, the relative velocity variation of US waves following the temperature change with a very high precision of 10−4% is shown, and a good bridge health condition is inferred. The influence of lightweight real traffic is negligible. The study verified the feasibility of the implementation of the CWI method on real bridge structures. KW - Ultrasound KW - Coda Wave Interferometry KW - Noise KW - Concrete KW - Bridge PY - 2021 DO - https://doi.org/10.1007/s10921-020-00743-9 VL - 40 IS - 1 SP - Article number: 14 PB - Springer Nature AN - OPUS4-52052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - NDT CE from simple detectors to deep insight and quantitative structural assessment N2 - Non-destructive testing methods are available in civil engineering for decades to estimate concrete properties or to detect flaws and features. But recently we have seen the dawn of next-generation tools, methods, and applications. Some of them will be discussed in the web talk: – Better tools: deeper and more detailed insight into concrete constructions – Better methods: Quantitative use in probabilistic structural assessment – Better rules: Towards standardization, qualification, and certification – Better application: Digitalization and Elimination of the boundaries between NDT, SHM, and BIM: NDT-CE 4.0 Not enough? I might show, how cosmic rays might become a game-changer in NDT-CE. This live webinar record was provided by https://eurostruct.org T2 - Eurostruct Live Talk CY - Online meeting DA - 12.05.2021 KW - NDT-CE KW - Concrete KW - Ultrasound KW - Muons PY - 2021 AN - OPUS4-54158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Gardner, S. A1 - Kind, Thomas A1 - Kaiser, R. A1 - Grunwald, Marcel A1 - Yang, G. A1 - Redmer, Bernhard A1 - Waske, Anja A1 - Mielentz, Frank A1 - Effner, Ute A1 - Köpp, Christian A1 - Clarkson, A. A1 - Thompson, F. A1 - Ryan, M. A1 - Mahon, D. T1 - Muon Tomography of the Interior of a Reinforced Concrete Block: First Experimental Proof of Concept JF - Journal of Nondestructive Evaluation N2 - Quality assurance and condition assessment of concrete structures is an important topic world-wide due to the aging infrastructure and increasing traffic demands. Common topics include, but are not limited to, localisation of rebar or tendon ducts, geometrical irregularities, cracks, voids, honeycombing or other flaws. Non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened up new fields of application, such as the investigation of freight containers. Muon imaging also has the potential to fill some of the gaps currently existing in concrete NDT. As a first step towards practical use and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. The data acquisition takes more time and signals contain more noise, but the images allowed to detect the same important features that are visible in conventional high energy X-ray tomography. In our experiment, we have shown that muon imaging has potential for concrete inspection. The next steps include the development of mobile detectors and optimising acquisition and imaging parameters. KW - Concrete KW - Muon KW - Radar KW - Ultrasound KW - X-ray PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529974 DO - https://doi.org/10.1007/s10921-021-00797-3 VL - 40 IS - 3 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-52997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for pulse echo object detection in an isotropic homogeneous medium as reference for heterogeneous materials in civil engineering JF - Data in Brief N2 - The dataset presented contains ultrasonic data recorded in pulse echo mode. The investigated specimen is made of the isotropic homogeneous material polyamide and has a drill hole of constant diameter running parallel to the surface, which was scanned in a point grid using an automatic scanner system. At each measuring position, a pitch-catch measurement was performed using a sampling rate of 2 MHz. The probes used are arrays consisting of a spatially separated receiving and in-phase transmitting unit. The transmitting and receiving sides each consist of 12 point-shaped single probes. These dry-point contact (DPC) probes operate according to the piezoelectric principle at nominal frequencies of 55 kHz (shear waves) and 100 kHz (longitudinal waves), respectively, and do not require a coupling medium. The measurements are performed with longitudinal (100 kHz) and transverse (55 kHz) waves with different geometric orientations of the probe on the measurement surface. The data presented in the article provide a valid source for evaluating reconstruction algorithms for imaging in the low-frequency ultrasound range. KW - Non-destructive testing KW - Ultrasound KW - Pulse-echo method KW - Reference material KW - Reconstruction algorithm KW - Validation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547326 DO - https://doi.org/10.1016/j.dib.2022.108235 VL - 42 SP - 1 EP - 11 PB - Elsevier Inc. AN - OPUS4-54732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Introduction to BAM and ultrasonics (and GPR) in civil engineering N2 - This presentation gives anoverview about BAM, its department 8 and in particular its division 8.2 "NDT methods for civil engineering". The focus is on methods and applications with a geoscientific context, such as methods adopted from geophysics or NDT method applied in a geological environment. T2 - GTK (Geological Survey of Finland) Semninar CY - Espoo, Finland DA - 20.01.2023 KW - NDT KW - Ultrasound KW - Radar KW - Geophysics KW - Concrete PY - 2023 AN - OPUS4-56911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diewald, F. A1 - Epple, Niklas A1 - Kraenkel, T. A1 - Gehlen, C. A1 - Niederleithinger, Ernst T1 - Impact of External Mechanical Loads on Coda Waves in Concrete JF - Materials N2 - During their life span, concrete structures interact with many kinds of external mechanical loads. Most of these loads are considered in advance and result in reversible deformations. Nevertheless, some of the loads cause irreversible, sometimes unnoticed changes below the macroscopic scale depending on the type and dimension of the impact. As the functionality of concrete structures is often relevant to safety and society, their condition must be known and, therefore, assessed on a regular basis. Out of the spectrum of non-destructive monitoring methods, Coda Wave Interferometry using embedded ultrasonic sensors is one particularly sensitive technique to evaluate changes to heterogeneous media. However, there are various influences on Coda waves in concrete, and the interpretation of their superimposed effect is ambiguous. In this study, we quantify the relations of uniaxial compression and uniaxial tension on Coda waves propagating in normal concrete. We found that both the signal correlation of ultrasonic signals as well as their velocity variation directly reflect the stress change in concrete structures in a laboratory environment. For the linear elastic range up to 30% of the strength, we calculated a velocity variation of −0.97‰/MPa for compression and 0.33%/MPa for tension using linear regression. In addition, these parameters revealed even weak irreversible changes after removal of the load. Furthermore, we show the time-dependent effects of shrinkage and creep on Coda waves by providing the development of the signal parameters over time during half a year together with creep recovery. Our observations showed that time-dependent material changes must be taken into account for any comparison of ultrasonic signals that are far apart in time. The study’s results demonstrate how Coda Wave Interferometry is capable of monitoring stress changes and detecting even small-size microstructural changes. By indicating the stated relations and their separation from further impacts, e.g., temperature and moisture, we anticipate our study to contribute to the qualification of Coda Wave Interferometry for its application as an early-warning system for concrete structures. KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Mechanical Load KW - Microstructure KW - Concrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556878 DO - https://doi.org/10.3390/ma15165482 SN - 1996-1944 VL - 15 IS - 16 SP - 1 EP - 15 PB - MDPI AN - OPUS4-55687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Imaging wood defects using air coupled ferroelectret ultrasonic transducers in reflection mode JF - Construction and Building Materials N2 - Air-coupled ultrasound (ACU) is used to detect defects in wood panels without physically contacting the sample and with a quick scanning rate. Transducers made of cellular polypropylene (PP) with a high signal-to-noise ratio are quite suitable for ACU testing of wood. The extremely low modulus of elasticity and low density of PP transducers results in a small difference in acoustic impedance for the Transmission of ultrasonic waves between the transducer and air, allowing new areas of application to become possible. To demonstrate the suitability of the reflection technique, measurements are shown on the three samples Multiplex, LVL, and MDF and compared with transmission measurements. Due to this acoustic barrier and the use of cellular PP transducers, an exact detection of delamination and cavities is possible in wood panels up to 40 mm thick. If only one side of an object is accessible and the depth of the defect is of interest, the reflection technique is preferred at the expense of a reduced measuring accuracy and Penetration depth. KW - Wood KW - Ultrasound KW - Air coupled KW - Defects PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.118032 VL - 241 SP - 118032, 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-50235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, T. A1 - Sens-Schönfelder, C. A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - Imaging of Small-Scale Heterogeneity and Absorption Using Adjoint Envelope Tomography: Results From Laboratory Experiments JF - JGR Solid Earth N2 - To complement the information provided by deterministic seismic imaging at length scales above a certain resolution limit we present the first application of adjoint envelope tomography (AET) to experimental data. AET uses the full envelopes of seismic records including scattered coda waves to obtain information about the distribution of absorption and small-scale heterogeneity which provide complementary information about the investigated medium. Being below the resolution limit this small-scale structure cannot be resolved by conventional tomography but still affects wave propagation by attenuating ballistic waves and generating scattered waves. Using ultrasound data from embedded sensors in a meter-sized concrete specimen we image the distribution of absorption and heterogeneity expressed by the intrinsic quality factor Q−1 and the fluctuation strength ɛ that characterizes the strength of the heterogeneity. The forward problem is solved by modeling the 2-D multiple nonisotropic scattering in an acoustic medium with spatially variable heterogeneity and attenuation using the Monte-Carlo method. Gradients for the model updates are obtained by convolution with the back-propagated envelope misfit using the adjoint formalism in analogy to full waveform inversion. We use a late coda time window to invert for absorption and an earlier time window to infer the distribution of heterogeneity. The results successfully locate an area of salt oncrete with increased scattering and concentric anomalies of intrinsic attenuation. The resolution test shows that the recovered anomalies constitute reasonable representations of internal structure of the specimen. KW - Ultrasound KW - Scattering KW - Tomography KW - Concrete KW - Heterogeneity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563163 DO - https://doi.org/10.1029/2022JB024972 SN - 2169-9313 VL - 127 IS - 11 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-56316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst A1 - Hindersmann, I. A1 - Sodeikat, C. A1 - Groschup, R. ED - Rizzo, P. ED - Milazzo, A. T1 - From the Lab to the Structure: Monitoring of a German Road Bridge Using Embedded Ultrasonic Transducers and Coda Waves T2 - European Workshop on Structural Health Monitoring N2 - The ‘Gänstorbrücke’ bridge between the cities of Ulm and Neu-Ulm is one of the best-monitored bridges all over Germany. In addition to an already active bride monitoring system, we have equipped the bridge with 30 ultrasonic transducers to explore the monitoring possibilities at an in-service large-scale reinforced concrete structure with continuous active ultrasonic measurements. The monitoring system is based on the detection of small changes in the entire signal, especially the multiply scattered parts of the recording, the so-called coda. Applying Coda Wave Interferometry (CWI), subtle changes in the signal can be detected and related to changing velocities in the area between source and receiver. A comparison of the results from coda wave interferometry with the strain measurements of the permanent monitoring system shows a correlation between strain measurements and CWI results. We discuss the challenges of changing environmental conditions, pose for interpretation of the results, and highlight the advantages of embedded versus externally attached ultrasonic transducers in permanent bridge monitoring, especially when coda wave interferometry is applied. KW - Bridge monitoring KW - Ultrasound KW - Embedded sensors KW - Coda wave interferometry PY - 2022 SN - 978-3-031-07258-1 DO - https://doi.org/10.1007/978-3-031-07258-1_83 VL - 254 SP - 824 EP - 832 PB - Springer Cham CY - Cham AN - OPUS4-55385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Evaluation of retroreflective corner echo for detection of surface breaking cracks in concrete by ultrasound T2 - Proceedings of NDT-CE 2022 N2 - The retroreflective corner echo is used, for example, in ultrasonic non-destructive testing of metals to find fatigue cracks in tubes or shafts. If the much weaker crack tip signal is additionally detected, the crack length can also be determined. A corner reflection occurs in cases of surface breaking cracks with predominantly perpendicular orientation to the surface. The intensity of the corner reflection depends on the angle of incidence and on the ultrasonic wave mode used. For the reliable detection of vertical surface breaking cracks in metals, transversal waves are commonly used, which propagate at an angle of 37° to 53° to the inspection surface. As shown in this contribution, the wide spread low frequency ultrasonic arrays with dry point contact sources available for ultrasonic testing of concrete also allow to receive corner echoes. These devices generate transversal waves in concrete structures with a large divergence of the sound field. A series of experiments was carried out with such dry point contact arrays on concrete specimens with artificial test defects and controlled induced cracks of different depths. The ultrasonic time-of-flight signals were recorded, exported and reconstructed utilising the SAFT (Synthetic Aperture Focusing Technique) algorithm. The SAFT reconstruction parameters were adjusted to visualize the corner echo indication. As will be shown, with this targeted processing, the reproducible detection of surface breaking cracks in concrete is possible. The retroreflective corner echo can thus be exploited in civil engineering for non-destructive inspection of concrete. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - Crack depth KW - Ultrasound KW - SAFT PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563365 UR - https://www.ndt.net/article/ndtce2022/paper/27256_manuscript.pdf IS - 27256 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Current Trends in SHM of German Prestressed Concrete Road bridges N2 - Due to increasing ageing, deterioration and loading , several prestressed concrete bridges bulit in the 1950ies and 1960ies need monitoring. Recently several bridges have sucesssfully equipped with acoustic emission sensing system. BAM works together with several universities on an add onn: Active ultrasonic monitoring combined with coda wave interferometry will help to detect subtle changes and precursors fo failure earlier than other methods. T2 - TRB 100th Annual Meeting, Subcommittee AKT40(3) CY - Online meeting DA - 05.01.2021 KW - Bridges KW - Monitoring KW - Acoustic emission KW - Ultrasound KW - Coda wave interferometry PY - 2021 AN - OPUS4-51972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clauß, F. A1 - Epple, Niklas A1 - Ahrens, M. A. A1 - Niederleithinger, Ernst A1 - Mark, P. T1 - Correlation of Load-Bearing Behavior of Reinforced Concrete Members and Velocity Changes of Coda Waves JF - Materials N2 - The integral collection of information such as strains, cracks, or temperatures by ultrasound offers the best prerequisites to monitor structures during their lifetime. In this paper, a novel approach is proposed which uses the collected information in the coda of ultrasonic signals to infer the condition of a structure. This approach is derived from component tests on a reinforced concrete beam subjected to four-point bending in the lab at Ruhr University Bochum. In addition to ultrasonic measurements, strain of the reinforcement is measured with fiber optic sensors. Approached by the methods of moment-curvature relations, the steel strains serve as a reference for velocity changes of the coda waves. In particular, a correlation between the relative velocity change and the average steel strain in the reinforcement is derived that covers 90% of the total bearing capacity. The purely empirical model yields a linear function with a high level of accuracy (R 2 =0.99, R2=0.99, RMSE≈90μ RMSE≈90μ strain). KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Structural Health Monitoring KW - Reinforced Concrete KW - Embedded Sensors PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542316 DO - https://doi.org/10.3390/ma15030738 VL - 15 IS - 3 SP - 738 PB - MDPI AN - OPUS4-54231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Mierschke, Vivien A1 - Bertschat, Anja Sophie T1 - Concepts from seismic interferometry transferred to sonic and ultrasonic concrete inspection and monitoring N2 - Seismic interferometry (SI) deals either with the sensible detection of changes in the subsurface or with the reconstruction of virtual signals between two receivers by crosscorrelation of signals from diffuse sources. These concepts can be applied in NDT in civil engineering for various purposes, e. g. to detect changes in bridges. Here it is demonstrated using data from a reference structure on our test site. Practical applications can be expected in the very near future. T2 - European Conference on Non-Destructive Testing (ECNDT) CY - Gothenburg, Sweden DA - 11.6.2018 KW - Ultrasound KW - Monitoring KW - Concrete KW - Interferometry KW - Coda PY - 2018 AN - OPUS4-46844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Mierschke, Vivien A1 - Bertschat, Anja Sophie T1 - Concepts from seismic interferometry transferred to sonic and ultrasonic concrete inspection and monitoring JF - The e-journal of nondestructive testing & ultrasonics N2 - Seismic interferometry (SI) deals either with the sensible detection of changes in the subsurface or with the reconstruction of virtual signals between two receivers by crosscorrelation of signals from diffuse sources. These concepts can be applied in NDT in civil engineering for various purposes, e. g. to detect changes in bridges. Here it is demonstrated using data from a reference structure on our test site. Practical applications can be expected in the very near future. T2 - 12th European Conference on Non-Destructive Testing (ECNDT 2018) CY - Gothenburg, Sweden DA - 11.6.2018 KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda KW - Interferometry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468465 UR - http://www.ndt.net/?id=22760 SN - 1435-4934 VL - 23 IS - 8 SP - 1 EP - 2 PB - NDT.net CY - Kirchwald AN - OPUS4-46846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clauß, F. A1 - Epple, Niklas A1 - Ahrens, M. A. A1 - Niederleithinger, Ernst A1 - Mark, P. T1 - Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry JF - Sensors N2 - Due to the high sensitivity of coda waves to the smallest structural alterations such as strain, humidity or temperature changes, ultrasonic waves are a valid means to examine entire structures employing networks of ultrasonic transducers. In order to substantiate this ex ante assessment, the viability of measuring ultrasonic waves as a valid point of reference and inference for structural changes is to be further scrutinized in this work. In order to investigate the influence of mechanical strain on ultrasonic signals, a four-point bending test was carried out on a reinforced concrete beam at Ruhr University Bochum. Thus, measurements collected from a network of selected transducer pairings arranged across the central, shear-free segment of the test specimen, were correlated to their respective strain fields. Detected ultrasonic signals were evaluated employing Coda Wave Interferometry. Such analysis comprised the initial non-cracked state as well as later stages with incremental crack depth and quantity. It was to ascertain that the test specimen can in fact be qualitatively compartmentalized into areas of compression and tension identified via Relative Velocity Changes presented in Attribute Maps. However, since results did not entail a zero crossing, i.e., neither positive nor negative values were to be calculated, only relative changes in this work displayed staggered over the height of the object under test, are discussed. Under the given methodological premises, additional information is currently required to make quantitative assertions regarding this correlation of ultrasonic and strain results. This holds true for the comparability of the ultrasonic and strain results for both non-cracked and even the cracked state. KW - Digital image correlation KW - Fiber optic sensors KW - Coda Wave Interferometry KW - Ultrasound KW - Concrete PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510501 DO - https://doi.org/10.3390/s20144023 SN - 1424-8220 VL - 20 IS - 14 SP - Paper 4023, 1 PB - MDPI CY - Basel AN - OPUS4-51050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Niederleithinger, Ernst T1 - Combining Passive and Active Ultrasonic Stress Wave Monitoring Techniques: Opportunities for Condition Evaluation of Concrete Structures T2 - Proceedings of NDT-CE 2022 N2 - Concrete structures are invaluable assets to a society and managing them efficiently and effectively can be supported by information gathered through structural health monitoring (SHM). In this paper, a combined approach based on passive, i.e., acoustic emission (AE), and active, i.e., ultrasonic stress wave (USW) monitoring techniques for application to concrete structures is proposed and evaluated. While AE and USW are based on the same underlying physics, i.e., wave motion in solids, they differ fundamentally with respect to the nature of the source. For the former, external stimuli such as mechanical loads or temperature cause the rapid release of energy from initially unknown locations. As a result, AE events are unique and cannot be repeated. For the latter, a known source at a known location is employed at a specified time. This approach is thus controlled and repeatable. It is argued that a combination of these two techniques has the potential to provide a more comprehensive picture of ongoing fracture processes, damage progression, as well as slowly occurring aging and degradation mechanisms. This combined approach does thus promise new opportunities to support condition assessment of concrete structures. After providing an overview and comparison of the two techniques, results, and observations from a full-scale laboratory experiment and an in-service bridge monitoring study are discussed to demonstrate the promise of the proposed combined monitoring approach. Finally, suggestions for further work are presented. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Acoustic emission KW - Concrete structures KW - Monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563242 UR - https://www.ndt.net/article/ndtce2022/paper/61607_manuscript.pdf SP - 1 EP - 11 PB - NDT.net AN - OPUS4-56324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Niederleithinger, Ernst A1 - Fontoura Barroso, Daniel T1 - Coda Wave Interferometry for Monitoring Bridges with Embedded Ultrasonic Transducers – Lessons Learned at the Gänstorbrücke Bridge Ulm, Germany T2 - NDT.net Issue - 2022-09 - N2 - Ultrasonic Coda Wave interferometry has the potential to detect minute changes in scattering materials like concrete. By permanently installing ultrasonic transducers in concrete, DFG Research unit CoDA aims to develop methods for concrete damage assessment in Germany's aging infrastructure. To test the methods developed in simulations and laboratory experiments on a large scale, we have implemented several ultrasonic transducers at the Gänstorbrücke Ulm, one of Germany's most monitored road bridges. Since fall 2020 we are monitoring parts of the center of the Bridge, as well as an abutment, and compare the results to the commercial monitoring system. All data is recorded with a self-made data collection device, the so-called W-Box, and analyzed with different coda wave-based algorithms to detect signal and volumetric velocity changes. The long-term measurements show that the influence of temperature changes on strains and therefore ultrasound velocity changes calculated with coda waves can be monitored. The capabilities and limitations of the coda wave-based monitoring system are tested in a controlled experiment. Static loading using a truck with varying loads at several positions allows the calibration of the system to improve the detectability of possibly damaging loads and changes induced by this loading. A map of velocity change analyzing data from this load experiment shows that the influence of load on the material and strain distribution can be detected with array measurements. T2 - NDT-CE 2022 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Coda Wave Interferometry KW - Ultrasound KW - Embedded sensors KW - Bridge Monitoring KW - Load Experiment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564531 SP - 1 EP - 8 AN - OPUS4-56453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Büttner, C. T1 - Application of Elastic P-SV Reverse Time Migration to Synthetic Ultrasonic Echo Data from Concrete Members JF - Journal of Nondestructive Evaluation N2 - The ultrasonic echo technique is frequently used in non-destructive testing (NDT) of concrete structures for thickness measurements, geometry determinations as well as localization of built-in components. To improve ultrasonic imaging of complex structures in concrete, we transferred a geophysical imaging technique, the reverse time migration (RTM), to NDT in civil engineering. In contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, RTM is a wavefield continuation method in time and uses the full wave equation. Thus, RTM can handle complicated wave propagations in any direction without dip limitation. In this paper, we focused on the application and evaluation of a two-dimensional (2D) elastic RTM algorithm considering compressional waves, vertically polarized shear waves, and Rayleigh waves. We tested the elastic RTM routine on synthetic ultrasonic echo data generated with a 2D concrete model consisting of several steps and circular air inclusions. As these complex structures can often be found in real-world NDT use cases, their imaging is especially important. By using elastic RTM, we were able to clearly reproduce vertical reflectors and lower edges of circular air voids inside our numerical concrete model. Such structures cannot be imaged with conventional SAFT algorithms. Furthermore, the used elastic RTM approach also yielded a better reconstruction of a horizontal reflector and upper boundaries of circular air inclusions. Our encouraging results demonstrate that elastic RTM has the potential to significantly improve the imaging of complex concrete structures and, thus, is a step forward for detailed, high-quality ultrasonic NDT in civil engineering. KW - Concrete KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Elastic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580680 DO - https://doi.org/10.1007/s10921-023-00962-w SN - 0195-9298 VL - 42 IS - 3 SP - 1 EP - 18 PB - Springer Nature AN - OPUS4-58068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Alternative imaging conditions for reverse-time migration N2 - Poster on the evaluation of several imaging conditions for reverse time migration, applied to ultrasonic echo data, tested with synthetic (simulated) dat and real data from a polyamide model. T2 - Jahrestagung der Deutschen geophysikalischen Gesellschaft CY - Leoben, Austria DA - 12.2.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete KW - Polyamide PY - 2018 AN - OPUS4-44583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 AN - OPUS4-44873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Air‑coupled ferroelectret ultrasonic transducers for nondestructive testing of wood‑based materials JF - Wood Science and Technology N2 - Air-coupled ultrasound (ACU) is used in through transmission to detect delamination, rot, and cracks in wood without altering the structure permanently. Novel ferroelectret transducers with a high signal-to-noise ratio enable high-precision structure recognition. Transducers made of cellular polypropylene are quite suitable for ACU testing due to their extremely low Young’s modulus and low density resulting in a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. Thus, structures with great dimensions, with a thickness of up to 300 mm and material densities below 500 kg/m3, can be inspected. Promising results were obtained under laboratory conditions with frequencies ranging from 90 to 200 kHz. The advantage of ACU transducers is that they do not equire contact to the sample; they are accurate and cost-effective. Ultrasonic quality assurance for wood is an important avenue to increase the acceptance of wooden structures and toward sustainability in civil engineering in general. KW - Ultrasound KW - Wood KW - Defect KW - Air-coupled PY - 2018 DO - https://doi.org/10.1007/s00226-018-1052-8 VL - 52 IS - 6 SP - 1527 EP - 1538 PB - Springer AN - OPUS4-46653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Advances in ultrasonic testing and monitoring of concrete structures N2 - Recent years have seen extended use of ultrasonic techniques for concrete infrastructure assessement. They are applied for quality assurance and condition assessement at bridges, power plants, dams and other important objects. However, there are still a couple of significant limitations. They include, but are not limited to depth of penetration, imaging complex structures or early stage detections of distributed damage. The talk will give information on recent research in this area. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. Comments on initiatives for validation, standardization and certification will be given. T2 - 341e Conférence CERES CY - Online meeting DA - 26.10.2020 KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2020 AN - OPUS4-51463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Advanced ultrasonic imaging for concrete: Alternative imaging conditions for reverse time migration T2 - DGZfP Jahrestagung 2018 N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448704 SP - Mi.3.A.4, 1 EP - 10 PB - DGZfP AN - OPUS4-44870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Sodeikat, C. A1 - Epple, Niklas A1 - Liao, Chun-Man A1 - Hindersmann, I. T1 - Acoustic emission and ultrasonic monitoring of a prestressed concrete bridge in its final years N2 - Many European bridges built in the 1950s, 60s and 70s must be re-placed in the next decade due to structural deficiencies, insufficient load capacity or other issues. However, the existing bridges must be used for another couple of years even if flaws and damages already have been detected. In Germany, several prestressed concrete bridges have been instrumented with acoustic emission detection systems to detect wire breaks and to provide early warning signs before failure. To evaluate and interpret the consequences of wire breaks additional instrumentation and accompanying measures as finite element modeling are required. At a bridge in southern Germany we have complemented such a system with active ultrasonic monitoring. Repeated ultrasonic measurements are evaluated with a very sensible algorithm called coda wave interferometry. This method, inspired by seismology, has been shown to deliver early warning signs in lab experiments. Large volumes of concrete can be monitored with a limited network of ultrasonic transducers. We will report on the installation, capabilities, and lim-itations as well as first results. T2 - 1st Conference of the European Association on Quality Control of Bridges and Structures (Eurostruct) CY - Padua, Italy DA - 29.08.2021 KW - Bridge KW - Concrete KW - Acoustic emission KW - Ultrasound KW - Monitoring PY - 2021 AN - OPUS4-54160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Hau, Julia A1 - Niederleithinger, Ernst ED - Cunha, A. ED - Caetano, E. T1 - Accounting for Long Term Environmental Influences on Ultrasonic Monitoring Measurements of Reinforced Concrete Constructions with Embedded Transducers T2 - Proceedings of the 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 N2 - Ultrasound measurements in concrete are a well-known technique in civil engineering and non-destructive testing. For consistent monitoring of a concrete structure, the common techniques, using external sensors can often not provide the appropriate degree of repeatability, as the surface of structures changes, and comparable coupling conditions cannot be guaranteed when a measurement is repeated after some time. By embedding ultrasound transducers in concrete, we aim to develop a strategy for long-term monitoring of infrastructure, especially bridges, as a supplement and extension to other techniques. Applying the so-called coda wave interferometry to these measurements we can detect subtle changes in the medium far beyond the Resolution limit of traditional time of flight methods. A smart sensor layout enables cost-efficient sensing of the entire area of interest. Embedding the transducers might remove uncertainties like coupling or positioning changes, while other challenges remain. Temperature and moisture content influence the structure and the transducers. These drifts need to be recorded and removed and good coupling must be ensured while not being able to visually inspect the sensor. In a multidisciplinary research group funded by the German Research Foundation, we aim to solve these problems on the way towards an ultrasound monitoring system for reinforced concrete structures. In various experiments in the lab and field, we determine the influence of temperature variations on the measurements and the equipment. As the monitoring task is the detection of irreversible damages - not reversible changes - a smart system requires a smart way of discrimination between permanent damages and reversible changes. With the data collected in these experiments, we present an approach to an environmental correction to ultrasound data to avoid a misinterpretation of these environmental changes as damage indicators. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Porto, Portugal DA - 30.06.2021 KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Structural Health Monitoring KW - Embedded Sensors PY - 2021 SP - 1 EP - 7 AN - OPUS4-54007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Larose, E. T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 AN - OPUS4-48688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, Odile A1 - Larose, Eric T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond T2 - Proceeding of QNDE 2019 N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 SP - Paper 1234 AN - OPUS4-48686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fontoura Barroso, Daniel A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - A Portable Low-Cost Ultrasound Measurement Device for Concrete Monitoring JF - Inventions: Special Issue "Low-Cost Inventions and Patents" N2 - This paper describes a new ultrasonic measuring device called “W-Box”. It was developed based on the requirements of the DFG Forschergruppe (research unit) CoDA for a portable device for monitoring of concrete specimens, models and actual structures using embedded ultrasonic transducers as well as temperature and humidity sensors. The W-Box can send ultrasonic pulses with a variable frequency of 50–100 kHz to one selectable transducer and records signals from up to 75 multiplexed channels with a sample rate of 1 MHz and a resolution of 14 bits. In addition, it measures temperature and humidity with high accuracy, adjustable amplification, restarts automatically after a power failure and can be fully controlled remotely. The measured data are automatically stored locally on-site data quality checks and transferred to remote servers. The comparison of the W-Box with a laboratory setup using commercial devices proves that it is equally reliable and precise, at much lower cost. The W-Box also shows that their measurement capacities, with the used embedded ultrasonic transducers, can reach above 6 m in concrete. KW - Low-cost KW - Coda wave interferometry KW - Ultrasound KW - IoT KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546756 DO - https://doi.org/10.3390/inventions6020036 SN - 2411-5134 VL - 6 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete T2 - Proceedings of NDT-CE 2022 N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -