TY - JOUR A1 - Wang, Xin A1 - Niederleithinger, Ernst A1 - Hindersmann, Iris T1 - The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique JF - Structural Health Monitoring N2 - This article presents a unique method of installing a special type of embedded ultrasonic transducers inside a 36-m-long section of an old bridge in Germany. A small-scale load test was carried out by a 16 ton truck to study the temperature and load influence on the bridge, as well as the performance of the embedded transducers. Ultrasonic coda wave interferometry technique, which has high sensitivity in detecting subtle changes in a heterogeneous medium, was used for the data evaluation and interpretation. The separation of two main influence factors (load effect and temperature variation) is studied, and future applications of wave velocity variation rate Φ for structural health condition estimation are discussed. As a preliminary research stage, the installation method and the performance of the ultrasonic transducer are recognized. Load- and temperature-induced weak wave velocity variations are successfully detected with a high resolution of 10−4%. The feasibility of the whole system for long-term structural health monitoring is considered, and further research is planned. KW - Ultrasound KW - Bridge KW - Monitoring KW - coda wave interferometry KW - embedded PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527978 DO - https://doi.org/10.1177/14759217211014430 SN - 1475-9217 VL - 21 IS - 3 SP - 913 EP - 927 PB - SAGE AN - OPUS4-52797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Sodeikat, C. A1 - Epple, Niklas A1 - Liao, Chun-Man A1 - Hindersmann, I. T1 - Acoustic emission and ultrasonic monitoring of a prestressed concrete bridge in its final years N2 - Many European bridges built in the 1950s, 60s and 70s must be re-placed in the next decade due to structural deficiencies, insufficient load capacity or other issues. However, the existing bridges must be used for another couple of years even if flaws and damages already have been detected. In Germany, several prestressed concrete bridges have been instrumented with acoustic emission detection systems to detect wire breaks and to provide early warning signs before failure. To evaluate and interpret the consequences of wire breaks additional instrumentation and accompanying measures as finite element modeling are required. At a bridge in southern Germany we have complemented such a system with active ultrasonic monitoring. Repeated ultrasonic measurements are evaluated with a very sensible algorithm called coda wave interferometry. This method, inspired by seismology, has been shown to deliver early warning signs in lab experiments. Large volumes of concrete can be monitored with a limited network of ultrasonic transducers. We will report on the installation, capabilities, and lim-itations as well as first results. T2 - 1st Conference of the European Association on Quality Control of Bridges and Structures (Eurostruct) CY - Padua, Italy DA - 29.08.2021 KW - Bridge KW - Concrete KW - Acoustic emission KW - Ultrasound KW - Monitoring PY - 2021 AN - OPUS4-54160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Towards digital tools for waste package and facility monitoring and prediction N2 - To provide better means for a safe and effective monitoring of cemented waste packages including prediction tools to assess the future integrity development during pre-disposal activities, several digital tools are evaluated and improved in the frame of the EC funded project PREDIS. Safety enhancement (e. g. less exposure of testing personnel) and cost effectiveness are part of the intended impact. The work includes but is not limited to inspection methods such as muon imaging, wireless sensors integrated into waste packages as well as external package and facility monitoring such as remote fiber optical sensors. The sensors applied will go beyond radiation monitoring and include Proxy parameters important for long term integrity assessment (e. g. internal pressure). Sensors will also be made cost effective to allow the installation of much more sensors compared to current practice. The measured data will be used in digital twins of the packages for specific simulations (geochemical, integrity) providing a prediction of future behavior. Machine Learning techniques trained by the characterization of older packages will help to connect the models to the actual data. All data (measured and simulated) will be collected in a joint data base and connected to a decision framework to be used at actual facilities. The presentation includes detailed information about the various tools under consideration, their connection and first results of our research. T2 - DigiDecom 2021 DIGITAL – Online event focusing on innovation within nuclear decommissioning CY - Online Meeting DA - 23.03.2021 KW - Radioactive waste KW - Waste package KW - Monitoring KW - Digital twin PY - 2021 AN - OPUS4-52622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Lay, Vera A1 - Köpp, Christian T1 - Digital tools for cemented waste package and facility monitoring and prediction N2 - To provide better means for a safe and effective monitoring of cemented waste packages including prediction tools to assess the future integrity development during pre-disposal activities, several digital tools are evaluated and improved in the frame of the EC funded project PREDIS. Safety enhancement (e. g. less exposure of testing personnel) and cost effectiveness are part of the intended impact. The work includes but is not limited to inspection methods such as muon imaging, wireless sensors integrated into waste packages as well as external package and facility monitoring such as remote fiber optical sensors. The sensors applied will go beyond radiation monitoring and include proxy parameters important for long term integrity assessment (e. g. internal pressure). Sensors will also be made cost effective to allow the installation of much more sensors compared to current practice. The measured data will be used in digital twins of the packages for specific simulations (geochemical, integrity) providing a prediction of future behavior. Machine Learning techniques trained by the characterization of older packages will help to connect the models to the actual data. All data (measured and simulated) will be collected in a joint data base and connected to a decision framework to be used at actual facilities. The paper includes detailed information about the various tools under consideration, their connection and first results of our research. T2 - International Conference on Radioactive Waste Management: Solutions for a Sustainable Future CY - Vienna, Austria DA - 01.11.2021 KW - Radioactive waste disposal KW - Monitoring KW - Cemented waste PY - 2021 AN - OPUS4-54163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. T2 - IABMAS 2020 CY - Online meeting DA - 11.04.2021 KW - Ultrasound KW - Monitoring KW - Coda wave interferometry KW - Concrete KW - Bridges PY - 2021 AN - OPUS4-54167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Current Trends in SHM of German Prestressed Concrete Road bridges N2 - Due to increasing ageing, deterioration and loading , several prestressed concrete bridges bulit in the 1950ies and 1960ies need monitoring. Recently several bridges have sucesssfully equipped with acoustic emission sensing system. BAM works together with several universities on an add onn: Active ultrasonic monitoring combined with coda wave interferometry will help to detect subtle changes and precursors fo failure earlier than other methods. T2 - TRB 100th Annual Meeting, Subcommittee AKT40(3) CY - Online meeting DA - 05.01.2021 KW - Bridges KW - Monitoring KW - Acoustic emission KW - Ultrasound KW - Coda wave interferometry PY - 2021 AN - OPUS4-51972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Lay, Vera A1 - Köpp, Christian A1 - Holt, E. A1 - Oksa, M. T1 - PREDIS: Innovative ways for pre disposal treatment and monitoring of low and medium radioactive waste N2 - The EURATOM PREDIS project (http://www.predis-h2020.eu, last access:TS1) targets the development and implementation of activities for predisposal treatment of radioactive waste streams other than nuclear fuel and high-level radioactive waste. It started on 1 September 2020 with a 4 year duration. The consortium includes 47 partners from 17 member states. The overall budget of the project is EUR23.7 million, with EC contribution of EUR 14 million. The PREDIS project develops and increases the technological readiness level (TRL) of treatment and conditioning methodologies for wastes for which no adequate or industrially mature Solutions are currently available, including metallic materials, liquid organic waste and solid organic waste. The PREDIS project also develops innovations in cemented waste handling and predisposal storage by testing and evaluating. The technical work packages align with priorities formulated within the Roadmap Theme 2 of EURAD (https://www.ejp-eurad.eu/TS2), Nugenia Global Vision (https://snetp.eu/nugenia/TS3) and with those identified by the project’s industrial end users group (EUG). The PREDIS will produce tools guiding decision making on the added value of the developed technologies and their impact on the design, safety and economics of waste management and disposal. Four technical work packages are focusing on specific waste types: metallic, liquid organic, solid organic, and cemented wastes. For the first three, the main aim lies in processing, stabilizing, and packaging the different waste streams, e.g. by using novel geopolymers, to deliver items which are in line with national and international waste acceptance criteria. In contrast, the fourth technical work package has a different focus. To provide better ways for a safe and effective monitoring of cemented waste packages including prediction tools to assess the future integrity development during predisposal activities, several digital tools are evaluated and improved. Safety enhancement (e.g. less exposure of testing personnel) and cost-effectiveness are part of the intended impact. The work includes but is not limited to inspection methods, such as muon imaging, wireless sensors integrated into waste packages as well as external package and facility monitoring, such as remote Fiber optic sensors. The sensors applied will go beyond radiation monitoring and include proxy parameters important for long-term integrity assessment (e.g. internal pressure). Sensors will also be made cost-effective to allow the installation of many more sensors compared to current practice. The measured data will be used in digital Twins of the waste packages for specific simulations (geochemical, integrity) providing a prediction of future behavior. Machine learning techniques trained by the characterization of older waste packages will help to connect the models to the current data. All data (measured and simulated) will be collected in a joint database and connected to a decision framework to be used at actual facilities. The presentation includes detailed information about the various tools under consideration in the Monitoring of cemented waste packages, their connection and first results of the research. T2 - Safety of Nuclear Waste Disposal CY - Berlin, Germany DA - 10.11.2021 KW - Radioactive waste disposal KW - RFID KW - Monitoring KW - Cemented waste PY - 2021 AN - OPUS4-54157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Sturm, Patrick A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Hofmann, Detlef A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - SealWasteSafe: materials technology, monitoring techniques, and quality assurance for safe sealing structures in underground repositories T2 - Safe Nuclear Waste Disposal N2 - Within the project SealWasteSafe, we advance construction materials and monitoring concepts of sealing structures applied for underground disposal of nuclear or toxic waste. As these engineered barriers have high demands concerning integrity, an innovative alkali-activated material (AAM) is improved and tested on various laboratory scales. This AAM has low reaction kinetics related to a preferential slow release of the heat of reaction in comparison to alternative salt concretes based on Portland cement or magnesium oxychloride cements. Hence, crack formation due to thermally induced strain is reduced. After successful laboratory scale analysis (Sturm et al., 2021), the AAM is characterised on a larger scale by manufacturing test specimens (100–300 L). Conventional salt concrete (DBE, 2004) and the newly developed AAM are compared using two specimen geometries, i.e. cylindrical and cuboid. A comprehensive multisensor monitoring scheme is developed to compare the setting process of AAM and salt concrete for these manufactured specimens. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete, enable wireless access to temperature and humidity measurements and are compared to conventional cabled systems. Additionally, fibre-optic sensors (FOS) are embedded to record strain, but also have potential to record temperature and moisture conditions. Part of this project aims at demonstrating the high reliability of sensors and also their resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. Further technical improvements were implemented so that first results clearly show the scalability of the setting process from previous small-scale AAM experiments and particularly the high potential of the newly developed approaches. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, potential cracks and delamination. On the one hand, both active and passive ultrasonic measurements complement the results obtained from the multisensor monitoring scheme for the produced specimens. On the other hand, the unique large aperture ultrasonic system (LAUS) provides great depth penetration (up to nearly 10 m) and can thus be applied at in situ sealing structures built as a test site in Morsleben by the Federal Company for Radioactive Waste Disposal (Bundesgesellschaft für Endlagerung, BGE) as shown by Effner et al. (2021). An optimised field lay-out identified from forward modelling studies and advanced imaging techniques applied to the measured data will further improve the obtained results. To characterise the inside of the test engineered barrier and achieve a proof-of-concept, an ultrasonic borehole probe is developed to enable phased arrays that can further improve the detection of potential cracks. Modelling results and first analysis of semispherical specimens confirmed the reliability of the directional response caused by the phased arrays of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe improves the construction material, multisensor monitoring concepts and ultrasonics for quality assurance. This will help to develop safe sealing structures for nuclear waste disposal. The outcomes are particularly valuable for salt as a host rock but partly also transferrable to alternative conditions. T2 - Safe ND Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 10.11.2021 KW - Borehole probe KW - SealWasteSafe KW - Engineered barrier KW - Materials technology KW - Monitoring KW - AAM KW - Ultrasound PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539172 DO - https://doi.org/10.5194/sand-1-127-2021 VL - 1 SP - 127 EP - 128 PB - Copernicus AN - OPUS4-53917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -