TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Imani, A. A1 - Niederleithinger, Ernst A1 - Brown, M. C. T1 - Nondestructive Evaluation of Bridges without Structural Plans for Load Rating Purposes N2 - According to the NBI database, more than 21,000 in-service U.S. bridges lack sufficient structural documentation necessary for analytical load rating. Among these are a significant proportion of older prestressed concrete bridges. Given the lack of documentation on the reinforcing layout, such structures cannot be load rated analytically and are often subject to engineering judgement as the basis for rating. Otherwise, the typical approach for load rating such bridges is to conduct costly proof load testing and destructive probing together with making conservative assumptions. Therefore, any improvement to current practices will benefit DOTs and taxpayers alike. Accurately reconstructed 3D images of the girders to reflect the internal reinforcement could mitigate the need for costly, if not impractical, destructive testing and proof load testing, and help reduce dependency on conservative assumptions. This study examines a comprehensive NDE approach using ultrasonic tomography and GPR to aid in gathering structural information for load rating purposes. Different types of AASHTO and hollow core girders were tested. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Radar KW - Bridges KW - Load rating PY - 2022 AN - OPUS4-56356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Evaluation of retroreflective corner echo for detection of surface breaking cracks in concrete by ultrasound N2 - The retroreflective corner echo is used, for example, in ultrasonic non-destructive testing of metals to find fatigue cracks in tubes or shafts. If the much weaker crack tip signal is additionally detected, the crack length can also be determined. A corner reflection occurs in cases of surface breaking cracks with predominantly perpendicular orientation to the surface. The intensity of the corner reflection depends on the angle of incidence and on the ultrasonic wave mode used. For the reliable detection of vertical surface breaking cracks in metals, transversal waves are commonly used, which propagate at an angle of 37° to 53° to the inspection surface. As shown in this contribution, the wide spread low frequency ultrasonic arrays with dry point contact sources available for ultrasonic testing of concrete also allow to receive corner echoes. These devices generate transversal waves in concrete structures with a large divergence of the sound field. A series of experiments was carried out with such dry point contact arrays on concrete specimens with artificial test defects and controlled induced cracks of different depths. The ultrasonic time-of-flight signals were recorded, exported and reconstructed utilising the SAFT (Synthetic Aperture Focusing Technique) algorithm. The SAFT reconstruction parameters were adjusted to visualize the corner echo indication. As will be shown, with this targeted processing, the reproducible detection of surface breaking cracks in concrete is possible. The retroreflective corner echo can thus be exploited in civil engineering for non-destructive inspection of concrete. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - Crack depth KW - Ultrasound KW - SAFT PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563365 UR - https://www.ndt.net/article/ndtce2022/paper/27256_manuscript.pdf IS - 27256 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. ED - Yokota, H. ED - Frangopol, D. W. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2021 SN - 978-0-367-23278-8 U6 - https://doi.org/10.1201/9780429279119-345 SP - 2525 EP - 2531 PB - Taylor & Francis CY - London, UK AN - OPUS4-54168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Sodeikat, C. A1 - Epple, Niklas A1 - Liao, Chun-Man A1 - Hindersmann, I. T1 - Acoustic emission and ultrasonic monitoring of a prestressed concrete bridge in its final years N2 - Many European bridges built in the 1950s, 60s and 70s must be re-placed in the next decade due to structural deficiencies, insufficient load capacity or other issues. However, the existing bridges must be used for another couple of years even if flaws and damages already have been detected. In Germany, several prestressed concrete bridges have been instrumented with acoustic emission detection systems to detect wire breaks and to provide early warning signs before failure. To evaluate and interpret the consequences of wire breaks additional instrumentation and accompanying measures as finite element modeling are required. At a bridge in southern Germany we have complemented such a system with active ultrasonic monitoring. Repeated ultrasonic measurements are evaluated with a very sensible algorithm called coda wave interferometry. This method, inspired by seismology, has been shown to deliver early warning signs in lab experiments. Large volumes of concrete can be monitored with a limited network of ultrasonic transducers. We will report on the installation, capabilities, and lim-itations as well as first results. T2 - 1st Conference of the European Association on Quality Control of Bridges and Structures (Eurostruct) CY - Padua, Italy DA - 29.08.2021 KW - Bridge KW - Concrete KW - Acoustic emission KW - Ultrasound KW - Monitoring PY - 2021 AN - OPUS4-54160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Niederleithinger, Ernst A1 - Hindersmann, Iris T1 - The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique N2 - This article presents a unique method of installing a special type of embedded ultrasonic transducers inside a 36-m-long section of an old bridge in Germany. A small-scale load test was carried out by a 16 ton truck to study the temperature and load influence on the bridge, as well as the performance of the embedded transducers. Ultrasonic coda wave interferometry technique, which has high sensitivity in detecting subtle changes in a heterogeneous medium, was used for the data evaluation and interpretation. The separation of two main influence factors (load effect and temperature variation) is studied, and future applications of wave velocity variation rate Φ for structural health condition estimation are discussed. As a preliminary research stage, the installation method and the performance of the ultrasonic transducer are recognized. Load- and temperature-induced weak wave velocity variations are successfully detected with a high resolution of 10−4%. The feasibility of the whole system for long-term structural health monitoring is considered, and further research is planned. KW - Ultrasound KW - Bridge KW - Monitoring KW - coda wave interferometry KW - embedded PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527978 SN - 1475-9217 VL - 21 IS - 3 SP - 913 EP - 927 PB - SAGE AN - OPUS4-52797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst A1 - Hindersmann, I. A1 - Sodeikat, C. A1 - Groschup, R. ED - Rizzo, P. ED - Milazzo, A. T1 - From the Lab to the Structure: Monitoring of a German Road Bridge Using Embedded Ultrasonic Transducers and Coda Waves N2 - The ‘Gänstorbrücke’ bridge between the cities of Ulm and Neu-Ulm is one of the best-monitored bridges all over Germany. In addition to an already active bride monitoring system, we have equipped the bridge with 30 ultrasonic transducers to explore the monitoring possibilities at an in-service large-scale reinforced concrete structure with continuous active ultrasonic measurements. The monitoring system is based on the detection of small changes in the entire signal, especially the multiply scattered parts of the recording, the so-called coda. Applying Coda Wave Interferometry (CWI), subtle changes in the signal can be detected and related to changing velocities in the area between source and receiver. A comparison of the results from coda wave interferometry with the strain measurements of the permanent monitoring system shows a correlation between strain measurements and CWI results. We discuss the challenges of changing environmental conditions, pose for interpretation of the results, and highlight the advantages of embedded versus externally attached ultrasonic transducers in permanent bridge monitoring, especially when coda wave interferometry is applied. KW - Bridge monitoring KW - Ultrasound KW - Embedded sensors KW - Coda wave interferometry PY - 2022 SN - 978-3-031-07258-1 U6 - https://doi.org/10.1007/978-3-031-07258-1_83 VL - 254 SP - 824 EP - 832 PB - Springer Cham CY - Cham AN - OPUS4-55385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Kudla, W. T1 - Ultrasonic quality assurance for underground salt shotcrete sealing structures in Teutschenthal mine, Germany N2 - Underground sealing structures are necessary to seal radioactive or toxic waste in underground repositories. A special version of MgO concrete is used in the mine in Teutschenthal and applied at a large-scale test with the aim to provide a low permeability barrier. The test structures (up to 10 m long) were created by shotcreting. Besides destructive tests, non-destructive ultrasonic measurements have been evaluated for quality assurance to monitor potential anomalies such as cracks, concrete inhomogeneities, and delamination. We show results of ultrasonic measurements with a multi-transducer system used at the front and from the side of the concrete structure. Images are obtained by synthetic aperture focusing techniques. The boundaries between concreting sections are not visible in the ultrasonic images systematically so that a successful concreting is assumed, which is confirmed by the low permeabilities observed. Several reflectors up to a depth of 1.2 m are identified and interpreted as potential damages in the concrete. Phase analysis of prominent reflectors reveal a negative impedance contrast thus indicating air filled voids, cracks or delamination. Boreholes through some of the identified reflectors are used to verify the results from ultrasonic measurements. Additionally, an experiment with incorporated artificial defects was undertaken to analyse the reliability of the applied methods. Overall, the conducted tests show the potential of ultrasonic measurements to detect critical anomalies. Despite challenges at small-scale structures (cm-order), large-scale anomalies can be identified. Consequently, implementing ultrasonic monitoring during and after the construction of concrete sealing structures has shown its potential as a tool for quality assurance, but needs further development and validation. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Ultrasonic imaging KW - Magnesia shotcrete KW - Underground KW - Engineered barrier systems PY - 2022 UR - https://www.ndt.net/events/proceedings/topic.php?eventID=292&TopicID=27209 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-55824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - Coda wave interferometry used for monitoring of concrete constructions N2 - Ultrasonic transmission measurements on concrete; embedded transducers; coda wave interferometry to check for subtle chnages in velocity as indicator for various loads or deterioration. T2 - 76. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Münster, Germany DA - 14.03.2016 KW - Ultrasound KW - Transmission KW - Coda wave interferometry KW - Concrete KW - Load PY - 2016 AN - OPUS4-37721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Inspection and monitoring of massive concrete structures by innovative ultrasonic methods N2 - Presentation on recent progress in ultrasinic testing and monitoring of concrete for massive structures. First, a new instrument (LAUS) for ultrasonic echo testing of thicknesses up to 5 m is shown. A new method to provide better images of the concrete interior, Reverse Mitem Migration (RTM)is presented. Second, the use of embedded ultrasonic transducers and data processing methods borrowed from seismology to detect subtle changes in concrete are documented. T2 - NUCCON 2016 CY - Helsinki, Finland DA - 31.10.2016 KW - Ultrasound KW - Concrete KW - Imaging KW - Monitoring KW - Nuclear PY - 2016 AN - OPUS4-38181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -