TY - CONF A1 - Niederleithinger, Ernst A1 - Ertel, Jens-Peter A1 - Sochor, M. A1 - Unseld, H. T1 - Nachbestimmung von Pfahllängen am Beispiel von Masten N2 - Im Rahmen der Lebensdauerverlängerung oder der Umnutzung von Bauwerken (z. B. Brücken, Bürogebäude oder Maste) müssen diese zum Teil neu bewertet werden. Dafür ist eine Nachrechnung für statische und dynamische Lastfälle erforderlich. Dies betrifft zum einen die Struktur selbst, die gegebenenfalls verstärkt werden muss. Aber auch die Gründung (oft Pfähle verschiedenster Typen) muss neu beurteilt werden. Nach mehreren Jahrzehnten sind jedoch für einige Bauwerke keine zuverlässigen Bestandsunterlagen verfügbar. Eine vollständige Freilegung der Pfähle verbietet sich aus Kostengründen sowie Verlust an Widerstand gegen Zug. Lediglich der Pfahlanschluss kann visuell begutachtet werden, um Pfahlzahl, -typ und Durchmesser zu bestimmen. Für die Bestimmung der Pfahllänge müssen zerstörungsfreie Verfahren eingesetzt werden. In einer Machbarkeitsstudie wurden von den Autoren teils im Blindversuch drei Verfahren evaluiert: die klassische Pfahlintegritätsprüfung nach der Hammerschlagmethode, eine mehrkanalige Variante hierzu und das Parallel-Seismik-Verfahren. Die ersten beiden Methoden lieferten an den untersuchten Pfählen nur in Einzelfällen verwertbare Ergebnisse. Die Parallel-Seismik-Methode lieferte auch im Blindversuch an Fundamenten, bei denen die Pfahllänge dem Eigentümer bekannt war, Ergebnisse mit einer Abweichung von max. 0,5 m. Diese Toleranz lässt sich bei der Standfestigkeitsbeurteilung berücksichtigen. Die Mehrkosten des Verfahrens (anders als bei den anderen Verfahren wird ein verrohrtes Bohrloch im Boden nahe dem Pfahl benötigt) halten sich in Grenzen, wenn man es in die geotechnische Untersuchung integriert. Daher wurde es inzwischen auch in der Praxis eingesetzt. Auch liegen die Gesamtkosten für die Untersuchung deutlich unter denen für eventuell notwendigen Ersatz – oder Verstärkungsmaßnahmen, die notwendig werden, wenn keine Daten zur Pfahllänge verfügbar sind. Der Vortrag erläutert die Ergebnisse der Machbarkeitsstudie, zeigt erste Praxisfälle und weist auf Möglichkeiten hin, das Parallel-Seismik Verfahren in Zukunft noch genauer und effizienter einzusetzen. T2 - 34. Baugrundtagung CY - Bielefeld, Germany DA - 15.09.2016 KW - Mast KW - Pfahl KW - Länge KW - Parallel-Seismik KW - Integritätsprüfung PY - 2016 SN - 9783946039013 SP - 31 EP - 36 PB - DGGT CY - Essen AN - OPUS4-37648 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zheng, H. A1 - Ertel, Jens-Peter A1 - Kourmpetis, M. A1 - Kanfoud, J. A1 - Niederleithinger, Ernst A1 - Gan, T.-H. T1 - Integrity testing of cast in situ concrete piles based on an impulse response function method using sine‑sweep excitation by a shaker N2 - In this study, an Impulse Response Function analysis of pile response to sine-sweep excitation by a low cost, portable Shaker was used to identify defects in piles. In straightforward impact-echo methods, echoes from the pile toe and defects are visible in the time domain measurements. However, these echoes are not present in the time domain records of piles subjected to sine-sweep excitations, due to interactions between the input and output signals. For this reason, the impulse response function in the time domain has been calculated and is able to identify the echoes from pile impedance changes. The proposed methodology has been evaluated both numerically and experimentally. A one-dimensional pile-soil interaction system was developed, and a finite difference method used to calculate the pile response to sine-sweep excitation. The numerical simulations indicate that impulse response measurements with a synthesized logarithmic, sine-sweep excitation could be an effective tool for detecting defects in piles. The methodology was further tested with field trials on 6 cast in situ concrete test piles including 1 intact pile and 5 defective piles subjected to sine-sweep excitations by a shaker. In 5 of the 6 cases the echoes from the pile toe could be identified in the deconvoluted waveforms—the impulse Response functions. Damage detection is more difficult and dependent on the selection of the optimal regularization parameter. Further research and optimization of the deconvolution process is needed to evaluate the effectiveness compared to standard pile integrity testing methods. KW - Pile testing KW - Shaker KW - Deconvolution PY - 2019 U6 - https://doi.org/10.1007/s10921-019-0595-4 SN - 0195-9298 SN - 1573-4862 VL - 38 IS - 2 SP - 55, 1 EP - 18 PB - Springer CY - Cham, Switzerland AN - OPUS4-48185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zheng, H. A1 - Kappatos, V. A1 - Niederleithinger, Ernst A1 - Ertel, Jens-Peter A1 - Grohmann, Maria A1 - Selcuk, C. A1 - Gan, T.-H. T1 - Defect detection in concrete pile using impulse response measurements with sine sweep excitations N2 - For pile integrity inspection, a low cost and portable shaker was used to create the sine sweep signal for pile excitation. The impulse response function, calculated by the deconvolution of pile response from the sine sweep excitation, was proposed to identify the echoes in the piles due to the pile’s impedance changes. The proposed methodology has been evaluated and validated both numerically and experimentally. Based on the results from the simulations and experiments, it was found that the impulse response measurement with sine sweep excitation could be an effective tool to detect the echoes of the pile toe and the defects in the pile. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Impulse response function KW - Sine sweep excitation KW - Pile integrity KW - Damage detection PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-347157 SN - 1435-4934 SP - 1 EP - 4 PB - Technische Universität Berlin / Bundesanstalt für Materialforschung und -prüfung AN - OPUS4-34715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst A1 - Grohmann, Maria ED - Stahlmann, J. T1 - Das PileInspect-Projekt: Pfahlintegritätsprüfung durch Schwinganregung mittels eines elektrodynamischen Shakers N2 - Pfahlintegritätsprüfung von Bohrpfählen durch Messung der Impulsantwort mittels Schwinganregung und regularisierter Dekonvolution. T2 - Pfahlsymposium 2017 CY - Braunschweig, Germany DA - 23.02.2017 KW - Pfahlintegritätsprüfung KW - Tikhonov KW - Dekonvolution KW - PileInspect KW - Shaker PY - 2017 VL - 2017 IS - 102 SP - 217 EP - 235 PB - Eigenverlag Institut für Grundbau und Bodenmechanik - Technische Universität Braunschweig CY - Braunschweig AN - OPUS4-39272 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Old ideas to improve pile integrity testing revisited and optimized N2 - Low strain pile integrity testing is an established method in QA of foundation piles. The technique is very effective and well accepted for larger flaws and length determination. It is part of standards and recommendations. Challenges exist for more complicated structures (e. g. pile walls, diaphragm walls, and pile under structures) and small flaws. Interpretation is subjective in many cases. Possible solutions, e.g. the use of vibrators instead of a hammer or application of several sensors instead of one have been proposed decades ago, but not used much in practice. In several projects we are working on the extension and optimizations of these ideas, based on input from other engineering disciplines. In the frame of the project PileInspect we are working with an international consortium on the use of vibrators instead of a hand held hammer. This allows the full control of input signals as well as the use of (semi)automatic classification routines from machine diagnosis. At BAM we are using a low cost vibrator and deconvolution routines to improve the results of classical low strain testing. In another project we are working on multichannel measurements with sensor placement along the pile axis. This can be used to determine the travel direction of certain waves (downwards or upwards) to improve the interpretation of measurements on piles below constructions or pile walls. The use of ideas adapted from geophysics („vertical seismic profiling“) are helpful. Both concepts are proven by simulations results and first field tests. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Pile inspect KW - Ultraseismic KW - Low strain pile integrity testing KW - Piles KW - Shaker KW - Deconvolution KW - Vertical seismic profiling PY - 2015 SN - 1435-4934 SP - 1 EP - 4 AN - OPUS4-34716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Advances in pile integrity testing N2 - For decades, the low-strain impact integrity testing using a hammer blow is well established as a method of quality assurance for various pile types. However, this method has its limitations. Our research and development focuses on improving the excitation signal using a shaker system in contrast to the standard hammer method. Another approach is to increase the amount of sensors used during testing. The purpose is to identify the direction of wave propagation which gives advantages under difficult conditions, such as piles below structures. Pile integrity testing (PIT) using a shaker system was performed on two 11 m long piles of 90 cm in diameter. While one pile was intact, the other one showed a flaw at approx. 3.5 m below pile top, which was confirmed by standard PIT in 2012. A logarithmic sweep between 500 Hz and 1 KHz of 0.1 s was used as the input signal, being vertically injected into the pile. Prior to that, simulations on similar pile geometries showed that the depth of the pile toe as well as flaws within the pile can be extracted by applying regularized deconvolution. The result is the impulse response in the time domain. The application of deconvolution on the measured signals shows that it is possible to identify the pile length but it is more difficult to clearly extract the flaw’s position in the pile. Additional digital signal processing techniques and the improvement of the regularized deconvolution method as well as the experimental setup need to be investigated. Another way to improve the PIT method is to use a multichannel sensor arrangement. By arranging several accelerometers vertically along the accessible part of the pile shaft, it is possible to distinguish between downward and upward traveling waves. Furthermore, it is possible to estimate the unknown wave speed, which gives the possibility of more accurate pile length calculations. The method was evaluated successfully during a measurement campaign of a slab foundation with subjacent piles. In 20 of 28 cases the pile length could be detected accurately. KW - Pile integrity testing KW - Pile length KW - CEFIT KW - Deconvolution KW - Simulation PY - 2016 UR - http://nsg.eage.org/publication/publicationdetails/?publication=86879 SN - 1569-4445 SN - 1873-0604 VL - 14 IS - 6 SP - 503 EP - 512 PB - EAGE Publications AN - OPUS4-37837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst ED - Bullock, P. ED - Verbeek, G. ED - Paikowsky, S. ED - Tara, D. T1 - Impulse Response Measurement for Pile Integrity Testing Using a Shaker as Excitation Source and Regularized Deconvolution N2 - Concrete piles are used as a foundation when the load capacity of the soil is insufficient or when the sustainable soil is found at a higher depth. Among other impact factors, the load capacity depends on the pile’s integrity and length. Therefore, verifying these parameters using adequate methods is recommended. The most common procedure is the low-strain integrity test using the hammer impact method. Developed and established in the 1970s, this method uses stress waves induced by a hammer impact at the pile head and its reflections at impedance changes (length, defects, geometry changes) to estimate the length and defect locations. Although this method is widely used due to its low cost and fast conduction in situ, one disadvantage is its inability to classify the exact type of defect, i.e., crack, change in diameter, or concrete quality. Furthermore, very long and slender piles are difficult to test and small defects cannot be detected. In addition, it is necessary for the test engineer to hold a high level of experience and expertise in this field. The European Union–funded PileInspect project (2013–2016) aimed to compensate for these disadvantages by using a low-cost shaker as the excitation source and sophisticated artificial intelligence algorithms for damage detection (higher-order spectra method). Because this technology lacks the capacity to localize damages and verify the pile length, an additional impulse response (IR) measurement technique was developed using vibrational excitation and regularized deconvolution to extract the depth information from the data in a similar manner as the hammer method. Simulations and subsequent experiments conducted at a test facility on 90-cm-diameter bored piles 11 m in length and containing cracks at approximately 4 m below the pile head confirmed the capacity to determine the pile length. Damage diagnosis and localization, however, are more difficult than for the hammer method. Although the damaged piles could be distinguished from the intact piles, in a blind test, this method might lead to misinterpretations caused by perturbations arising from the deconvolution process. The results also indicated that the low-cost shaker used for these measurements might be inappropriate for the transferal of sufficient energy. Although the IR method cannot compensate for the disadvantages of the hammer method by itself, it may enable the possibility of using long and fully controllable and repeatable signals (chirp, synthetic impacts, even noise, etc.) for pile integrity testing in the future. KW - Pile integrity testing KW - L-curve KW - Tikhonov regularization KW - NDT PY - 2019 SN - 978-0-8031-7667-6 U6 - https://doi.org/10.1520/STP161120170162 VL - 1611 SP - 184 EP - 204 PB - ASTM International CY - West Conshohoken, PA, USA AN - OPUS4-48794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Ertel, Jens-Peter A1 - Grohmann, Maria ED - Stahlmann, J. T1 - Low-Strain-Pfahlintegritätsprüfung reloaded: Geht nicht doch ein bisschen mehr? N2 - Die beiden in dieser Arbeit dargestellten Beispiele zeigen, dass sich die Low-strain-Pfahlintegritätsprüfung noch über den bisherigen, schon sehr erfolgreichen Stand hinaus entwickeln kann. Der Einsatz von Vibratortechnik und passender mathematischer Methoden bietet das Potential, Prüfungen auch unter bisher nicht lösbaren Randbedingungen durchzuführen. Dazu gehören sehr schlanke Pfähle und Messungen bei hohem Störpegel. Der erhöhte Mess- und Auswerteaufwand ist jedoch im Einzelfall gegenüber dem erzielbaren Erfolg abzugleichen. Apparativ müssen noch Entwicklungsarbeiten geleistet werden, um einen einfachen und zuverlässigen Einsatz in der Praxis zu ermöglichen. Die Messung mit mehreren Sensoren entlang des Pfahls kann schon heute in der Praxis eingesetzt werden. In vielen Fällen lassen sich damit auch Messungen an Pfählen im Bestand durchführen, bei denen die konventionelle Pfahlprüfung aufgrund von überlagernden Signalen aus der aufgehenden Struktur versagt. T2 - Pfahl-Symposium 2015 - Fachseminar CY - Braunschweig, Germany DA - 19.02.2015 KW - Pfahlprüfung KW - Integritätsprüfung KW - Vibrator KW - Mehrkanalmethode KW - Dekonvolution PY - 2015 SN - 3-927610-92-5 N1 - Serientitel: Mitteilung des Instituts für Grundbau und Bodenmechanik - Technische Universität Braunschweig – Series title: Mitteilung des Instituts für Grundbau und Bodenmechanik - Technische Universität Braunschweig IS - 99 SP - 117 EP - 135 PB - TU Braunschweig, Institut für Grundbau und Bodenmechanik AN - OPUS4-32643 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Grohmann, Maria A1 - Ertel, Jens-Peter T1 - Using geophysical methods in quality assurance and inspection of foundations N2 - Modern geophysical methods might be either directly applied to concrete structures or integrated into existing testing schemes to assist in quality assurance and inspections. This paper gives an overview on some ideas and developments from the author’s work: • Vibrator technologies to improve pile integrity testing. • Ideas from vertical seismic profiling used in multichannel pile inspection • Cross- and downhole seismics to check the diameter of jet grouting columns • Improving the parallel seismic methods for precise length measurement of piles and foundation walls • Seismic migration methods to improve ultrasonic imaging of foundation slabs • Seismological tools to monitor subtle changes in concrete constructions The authors strongly believe that the cooperation between geophysics and civil engineering, which is obviously becoming stronger and stronger, will lead to a large number of innovative approaches. T2 - ICEG 2017 CY - Al Ain, United Arab Emirates DA - 09.10.2017 KW - Foundations KW - NDT KW - Geophysics PY - 2017 SP - Paper EG02, 1 EP - 5 PB - UAE University CY - Al Ain, United Arab Emirates AN - OPUS4-42552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -