TY - GEN A1 - Braun, Ulrike A1 - Eisentraut, Paul A1 - Altmann, Korinna A1 - Kittner, Maria A1 - Dümichen, Erik A1 - Thaxton, K. A1 - Kleine-Benne, E. A1 - Anumol, T. T1 - Accelerated Determination of Microplastics in Environmental Samples Using Thermal Extraction Desorption-Gas Chromatography/Mass Spectrometry (TED-GC/MS) T2 - Agilent Application Notes N2 - There is growing interest in quantifying microplastics in environmental samples. This application note presents a thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) method that is well suited to automation and increased sample throughput. The method is also able to detect all particle sizes in the sample as long as the limit of detection (LOD) is reached and allows analysis of larger samples of 15 to 25 mg or more. Samples were decomposed by thermogravimetric analysis (TGA), and the gaseous decomposition products were trapped on a solid-phase sorbent, followed by thermal desorption‑gas chromatography/mass spectrometry (TD-GC/MS) using an Agilent 5977B GC/MSD coupled to an Agilent 7890B GC. Target microplastic particle (MP) polymers were identified in environmental samples including surface water, finished compost, house dust, and drinking water. Quantification of MP polymers in environmental samples provided LODs of 0.06 to 2.2 μg, allowing the detection of MPs in trace amounts with sample weights of up to 1 g. Method repeatability was adequate for reliable quantification with RSDs of approximately 6 to 12%. KW - Environment KW - Microplastic particles KW - TED-GC/MS KW - Mass content KW - Thermoanalytical PY - 2020 VL - 2020 SP - 1 EP - 8 PB - Agilent Technologies Inc. CY - USA AN - OPUS4-51672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Braun, Ulrike T1 - Fast identification of microplastics using thermal extractions methods N2 - A new and full automated system for the analysis of microplastics in environmental samples is presented. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Mikroplastik KW - TED KW - Thermal degradation PY - 2018 AN - OPUS4-44179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dümichen, Erik A1 - Braun, Ulrike A1 - Eisentraut, Paul T1 - Thermal extraction/desorption-gas chromatography-mass spectroscopy: A powerful tool for analyzing the degradation and decomposition of polymers N2 - Due to the high molecular weights the analysis of polymers is difficult to carry out. Their dissolution is usually limited and the vapor pressure is very low. However, the degradation of a polymer leads usually to smaller compounds which then enable volatile analysis to aid in the characterization of the degradation or decomposition mechanism. The type and the amount of these smaller degradation products is characteristic for the momentary stage of the degradation process. With thermal desorption coupled to gas chromatography with mass spectrometry (TDS-GC-MS) the polymers can be heated from ambient temperatures to approximately 300 °C. During the heating process small volatile products with a molecular mass up to 350 - 400 m/z were first cryogenic trapping, reheated under controlled conditions and finally separated through a chromatographic column and identified with mass spectrometry. For instance clear differences in the released volatile species of Polypropylene (PP) can be observed depending on the progress of accelerated aging. In combination with a Thermogravimetric analyzer (TGA) the samples can be heated up to 1000 °C under inert as well oxidative atmosphere. This leads to a complete thermal-pyrolytic or thermo-oxidative degradation of the whole material and a release of degradation fragments over a range of Mw. These fragments enable conclusions for the underlying degradation or decomposition pathways. For coupling to GC-MS a solid-phase adsorption agent can be coupled to the exhaust of the TGA. This adsorption agent is usually a PDMS species that is capable to adsorb compounds with a wide range of polarities. After the thermal extraction the solid-phase adsorption agent will be analyzed by TDS-GC-MS. Therefore, it is possible to determine the species and amounts of the released complex thermal or thermo-oxidative degradation products in detail. This approach offers overall advantageous over existing volatile analytical methods. Thus, it was possible to determine new thermal and thermo-oxidative degradation mechanism pathways of a well-known material like Polyamide 66 (PA 66). Further example is the unique analysis of small polymer particles, which can be identified and quantified in complex environmental samples. This is our current focus of R&D activities within the framework of the analysis of microplastics in the environment. In the present work we will present a new, automatized set up of this method. T2 - PDDG CY - Taormina, Sicily, Italy DA - 04.09.2017 KW - Thermal desorption KW - Thermal extraction PY - 2017 AN - OPUS4-41910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Bannick, Claus Gerhard A1 - Barthel, Anne-Kathrin A1 - Braun, Ulrike A1 - Senz, R. T1 - Fast identification of microplastics in complex environmental samples by a thermal degradation method JF - Chemosphere N2 - n order to determine the relevance of microplastic particles in various environmental media, comprehensive investigations are needed. However, no analytical method exists for fast identification and quantification. At present, optical spectroscopy methods like IR and RAMAN imaging are used. Due to their time consuming procedures and uncertain extrapolation, reliable monitoring is difficult. For analyzing polymers Py-GC-MS is a standard method. However, due to a limited sample amount of about 0.5 mg it is not suited for analysis of complex sample mixtures like environmental samples. Therefore, we developed a new thermoanalytical method as a first step for identifying microplastics in environmental samples. A sample amount of about 20 mg, which assures the homogeneity of the sample, is subjected to complete thermal decomposition. The specific degradation products of the respective polymer are adsorbed on a solid-phase adsorber and subsequently analyzed by thermal desorption gas chromatography mass spectrometry. For certain identification, the specific degradation products for the respective polymer were selected first. Afterwards real environmental samples from the aquatic (three different rivers) and the terrestrial (bio gas plant) systems were screened for microplastics. Mainly polypropylene (PP), polyethylene (PE) and polystyrene (PS) were identified for the samples from the bio gas plant and PE and PS from the rivers. However, this was only the first step and quantification measurements will follow. KW - Thermal Degradation KW - Microplastic PY - 2017 DO - https://doi.org/10.1016/j.chemosphere.2017.02.010 VL - 174 SP - 572 EP - 584 PB - Elsevier Ltd. AN - OPUS4-42143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Braun, Ulrike T1 - Polymere und Mikroplastik in der Umwelt JF - GIT Labor-Fachzeitschrift N2 - Es wird ein neues und voll automatisiertes Verfahren vorgestellt für die Analyse von Mikroplastik in der Umwelt. KW - Mikroplastik KW - TED PY - 2017 SN - 0016-3538 VL - 61 IS - 9 SP - 24 EP - 27 PB - Wiley AN - OPUS4-42170 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dümichen, Erik T1 - Neue Verfahren zur Untersuchung der Polymerdegradation und Aushärtung N2 - Es werden neue analytische Verfahren für die thermische und thermo-oxidative Degradation von Polymeren dargestellt sowie für die Analyse des Netzwerkaufbaus von Epoxidharzen. T2 - Sonderkolloquium des Adolf-Martens-Fonds e. V. CY - Berlin, Germany DA - 30.05.2017 KW - Poymeranalytik KW - Thermische Degradation PY - 2017 AN - OPUS4-42159 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dümichen, Erik A1 - Elert, Anna Maria A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Eisentraut, Paul T1 - Identification of microplastics in the environment N2 - The worldwide produced plastic amount was about 314 m tones in 2013. A content of about 5-12 m tones of plastic products is estimated to attain to the environment. There, they are exposed to environmental aging conditions like UV light, abrasion, water, oxidation etc. and degrade to small particles. If the particles reach a dimension < 5 mm they are called microplastic. Today microplastic is almost ubiquitary and was found in the aquatic as well as in the terrestrial environment. The main representatives are polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalat (PET). Analyzing microplastics in environmental samples turned out to be very challenging, due to the fact that there are only a few synthetic particles beside a huge number of natural. Furthermore, the different polymers particles vary in their shape, their density and their chemical characteristics. Until now, there is no standard procedure for sampling, concentration and analyzing. We developed a thermal decomposition method for analyzing micro plastics in environmental samples. The method is a combination of a thermal extraction on solid-phase adsorption agents with a subsequent analysis of the decomposition products by thermal desorption gas chromatography mass spectrometry. In contrast to more established methods, such as IR or Ramen spectroscopy, our method enables measurements within few hours and gives an integration result of polymer specific decomposition products. Therefore, it is possible to identify and to quantify polymers in environmental matrices. The use of the method is demonstrated for various polymers (PE, PP, PS, PET) in spiked and first time also in real environmental samples. T2 - MoDeSt 2016 CY - Krakau, Poland DA - 04.09.2016 KW - Microplastic PY - 2016 AN - OPUS4-37314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Dümichen, Erik A1 - Barthel, Anne-Kathrin A1 - Bannick, Claus Gerhard T1 - Charakterisierung von Mikroplastik Partikeln aus Umweltproben T2 - Wasser 2016 - Jahrestagung der Wasserchemischen Gesellschaft - Fachgruppe in der Gesellschaft Deutscher Chemiker / Wasserchemische Gesellschaft - FG in der GDCh N2 - Durch den stetig steigenden Einsatz von Plastikprodukten sind unerwünschte Kunststofffunde in verschiedenen Umweltmatrices mittlerweile allgegenwärtig. Besonderes Interesse erfahren die Kunststoffpartikel von einer Größe kleiner 5 mm, sogenannte Mikroplastik (MP) Partikel. Es werden aktuell Risiken für Mensch und Umwelt diskutiert, die von diesen Partikeln ausgehen. T2 - Wasser 2016 - Jahrestagung der Wasserchemischen Gesellschaft CY - Bamberg, Deutschland DA - 02.05.2016 KW - Mikroplastik KW - Polymere KW - Polyethylen (PE) KW - Polystyrol (PS) KW - Poly(ethylenterephthalat) (PET) PY - 2016 SN - 978-3-936028-94-2 SP - 74 EP - 76 PB - Wasserchemische Gesellschaft CY - Mülheim an der Ruhr, Germany AN - OPUS4-36782 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deußing, G. A1 - Dümichen, Erik A1 - Braun, Ulrike T1 - Polymeranalytik Intelligent kombiniert JF - Gerstel Aktuell N2 - Durch die intelligente Anbindung an die Stir Bar Sorptive Extraction (SBSE) lassen sich Zersetzungsprodukte der thermogravimetrischen Analyse (TGA) von Polymeren auf effiziente Weise anreichern, auftrennen und mittels GC/MS identifizieren. KW - Thermische Degradation KW - Mikroplastik PY - 2016 UR - http://www.gerstel.cn/de/GA51_Polymeranalytik.htm IS - 51 SP - 9 EP - 11 PB - Gerstel AN - OPUS4-42146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Dümichen, Erik T1 - Einsatz neuer thermoanalytischer Verfahren zur Untersuchung thermischer und thermo-oxidativer Degradationsmechanismen sowie dem Netzwerkaufbau von Polymeren N2 - Die Anwendung thermoanalytischer Methoden für die Polymercharakterisierung hat aufgrund der makromolekularen Struktur von Polymere Vorteile. Es wurden zwei neue thermoanalyti-sche Verfahren entwickelt und deren Einsatz anhand von Anendungsbeispielen demons-triert, sowie mit etablierten, thermoanalytischen Methoden verglichen. Für die thermische- und thermo-oxidative Zersetzungsgasanalytik wurde die Thermogravi-metrie (TGA) gekoppelt mit der Thermodesoptions-Gaschromatographie-Massenspektrometrie (TDS-GC-MS). Die Zersetzungsgase der TGA wurden dafür über ei-nen Festphasenadsorber geleitet, auf dem eine repräsentative Auswahl von polymerspezifi-schen Analyten adsorbiert wurde. Die thermische Extraktion der Analyten erfolgte in der TDS-GC-MS. Dies ermöglichte die Trennung der Analyten sowie die eindeutige Identifizie-rung mittels charakteristischer Massenfragmentmuster. Sie wurde als TED-GC-MS bezeichnet. Es stellte sich heraus, dass sie sich besonders für die Analyse von komplexen Kohlen-wasserstoffgemischen mit Molmassen von mehr als 100 g/mol eignet. In Kombination mit anderen Kopplungstechniken wie beispielsweise die TGA-FTIR/MS, die speziell für die Ana-lyse von kleineren Molekülen verwendet wurde, konnten neue grundlegende Zersetzungs-mechanismen entwickelt werden. Es wurde beispielsweise sichtbar, dass sowohl bei der thermischen als auch bei der thermo-oxidativen Degradation von Polyamid 66 (PA 66) Kon-densationsreaktionen eine wichtige Rolle spielen. Die Methode erwies sich darüber hinaus als besonders geeignet für die Identifizierung und Quantifizierung von Polymeren in Umweltproben. Es entstand dazu eine erste grundlegende Arbeit für die quantitative Bestimmung von Polyethylen (PE) Mikroplastik in Umweltproben. Im zweiten Teil der Arbeit wurde eine steuerbare beheizbare Zelle eingeführt. Mit ihr war es möglich, mit Hilfe der Nahinfrarotspektroskopie (NIR), sich verändernde Netzwerkstrukturen während der Härtung sichtbar zu machen. Vergleichend dazu wurden etablierte, kalorische Messungen durchgeführt. Somit konnten für verschiedene Epoxidsysteme die Aushärtegrade während der Härtung mit variablen Heizraten bestimmt werden. Dadurch konnten Aushär-tungskinetiken erstellt werden, die durch isotherme und komplexe Aushärtungsszenarien validiert wurden. KW - Thermische Methoden KW - Polymer KW - Analytik PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-fudissthesis000000100982-9 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000100982 SP - 1 EP - 65 PB - FU Berlin CY - Berlin AN - OPUS4-42171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -