TY - CONF A1 - Köppe, Enrico A1 - Augustin, D. A1 - Liers, A. A1 - Schiller, J. T1 - Self-calibration-method for an inertial navigation system with three 3D sensors T2 - ISISS 2014 - 1st IEEE International Symposium on Inertial Sensors and Systems (Proceedings) N2 - Inertial Navigation Systems with three 3D sensors are used to localize moving persons. The accuracy of the localization depends on the quality of the sensor data of the multi-sensor system. In order to improve the accuracy, a self-calibration process based on the automatic 3D calibration was developed. Based on the calibration procedure of the accelerometer (ACC) and the magnetic field sensor (MAG), the additional integration of the gyroscope (GYRO) leads to a reduction of the indoor positioning error. This improves both the approximation for the accelerometer and the magnetic field sensor so that the standard deviation of a single sensor is minimized. A new calibration procedure of the gyroscope and the accuracy improvement of the localization of a moving person are presented. T2 - ISISS 2014 - 1st IEEE International Symposium on Inertial Sensors and Systems CY - Laguna Beach, CA, USA DA - 25.02.2014 KW - Global Positioning System KW - Accelerometers KW - Calibration KW - Gyroscopes KW - Inertial navigation KW - Magnetic field measurement KW - Magnetic sensors KW - Sensor fusion KW - 3D sensor KW - ACC KW - GYRO KW - MAG KW - Accelerometer KW - Automatic 3D calibration KW - Gyroscope KW - Indoor positioning error reduction KW - Inertial navigation system KW - Magnetic field sensor KW - Moving person localization KW - Multisensor system KW - Self-calibration-method PY - 2014 SN - 978-1-4799-0915-5 DO - https://doi.org/10.1109/ISISS.2014.6782522 SP - 93 EP - 96 AN - OPUS4-32428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -