TY - THES A1 - Viyanit, Ekkarut T1 - Numerical Simulation of Hydrogen Assisted Cracking in Supermartensitic Stainless Steel Welds N2 - Replacement of expensive duplex stainless steel and conventional carbon steel by a new generation of supermartensitic stainless steel has been taken into account since the last decade corresponding to the "Fitness for Purpose" concept in order to meet the technical- economical challenge for transportation flowlines of unprocessed oil and gas products in offshore technology, in particular. Supermartensitic stainless steels can provide appropriate material properties such as: improved strength-to-weight ratio, enhanced useful corrosion resistance as well as application at relatively low cost. With decreased carbon content and increased molybdenum content compared to traditional martensitic stainless steel, hydrogen assisted stress corrosion cracking (HASCC) problems have been found during service caused by hydrogen being taken up during from sour service environments by cathodic protection. Hydrogen assisted cold cracking in supermartensitic stainless steel can also occur during fabrication welding with hydrogen picked up during welding, since this steel is relatively crack-susceptible by hydrogen. Therefore, effects of hydrogen assisted cracking (HAC), i.e. HASCC and HACC, on characteristic susceptibility of girth welds of supermartensitic stainless steel pipelines are studied in the present thesis by numerical modelling, which is developed using a available commercial finite element program. Firstly, numerical modelling for simulation of HASCC based on the NACE-TM 0177-96 approach is carried out for providing a basic understanding of the crack propagation behaviour. Secondly, a two dimensional finite element according to the gauge length cross-section of the orbitally welded pipeline is created for numerical modelling in order to calculate the time to failure of welded the component exposed to the NACE electrolyte solution with various H2S saturation. Externally applied loads of a series of constant strain rates and of the load history of full scale testing are also taken into account. Finally, numerical modelling is carried out under three specific aspects, i.e. thermal analysis, structural analysis, and hydrogen diffusion analysis, in order to simulate HACC in supermartensitic stainless steel pipelines welded orbitally by four layers of matching filler wires with an interpass temperature of 40°C. T3 - BAM Dissertationsreihe - 4 KW - numerical modelling KW - supermartensitic stainless steel KW - girth welds KW - pipeline KW - hydrogen assisted cracking (HAC) KW - hydrogen assisted stress corrosion cracking (HASCC), KW - hydrogen subsurface concentration KW - full scale test KW - post weld heat treatment (PWHT) KW - hydrogen diffusion coefficient PY - 2005 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1542 SN - 978-3-86509-270-5 SN - 1613-4249 VL - 4 SP - 1 EP - 228 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Böllinghaus, Thomas A1 - Viyanit, Ekkarut ED - Cerjak, H. T1 - Numerical Simulations of Hydrogen-Assisted Cracking in Girth Welds of Supermartensitic Stainless Steel Pipelines - Report I T2 - 6th International Seminar on the Numerical Analysis of Weldability CY - Seggauberg, Austria DA - 2001-10-01 PY - 2002 SN - 1-902653-56-4 N1 - Serientitel: Books of IOM3 – Series title: Books of IOM3 IS - 6 SP - 839 EP - 855 PB - Maney CY - London AN - OPUS4-1795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böllinghaus, Thomas A1 - Viyanit, Ekkarut A1 - Hoffmeister, H. T1 - Numerical modelling of hydrogen assisted cracking N2 - Hydrogen might be introduced during fabrication welding or might be taken up from an environment during sour service or cathodic protection. Thus, hydrogen assisted stress corrosion and cold cracking is still a major topic regarding the reliability of welded steel components, as for instance offshore platforms and pipelines. In order to support conclusive testing and life time evaluation of welded steel components, a numerical model for hydrogen assisted cracking has been developed, particularly taking into consideration the geometrical effects of crack propagation on the respective hydrogen distribution alongside and ahead of the crack. Numerical calculations were based on finite element analysis of the hydrogen and stress-strain distribution by using a commercially available program. The model has been verified experimentally by slow strain rate experiments of supermartensitic stainless steels which are intended to be used more extensively as materials for welded flowlines in North Sea oil and gas production. As first results of such simulations the influence of the subsurface concentration provided by different H2S saturation levels in the NACE TM 0177-96 standard solution on crack propagation and the effect of crack shape on the hydrogen distribution profile are presented in this contribution. T2 - Corrosion 2001 CY - Houston, TX, USA DA - 2001-03-11 KW - Hydrogen assisted cracking KW - Numerical simulation KW - Welded steel components KW - Low carbon martensitic stainless steel KW - Sour service KW - Slow strain rate test KW - Crack propagation PY - 2001 UR - http://www.nace.org/nacestore/department.asp?ID=671 IS - Paper 01226 PB - NACE International CY - Houston, Tex. AN - OPUS4-1015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tal-Gutelmacher, E. A1 - Eliezer, Dan A1 - Viyanit, Ekkarut A1 - Böllinghaus, Thomas ED - Carpinteri, A. T1 - Numerical Simulation of Hydrogen-Induced Cracking in Titanium Based Alloys T2 - 11th International Conference on Fracture CY - Turin, Italy DA - 2005-03-20 PY - 2005 SN - 978-88-903188-1-8 PB - CCI CY - Turin AN - OPUS4-11853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viyanit, Ekkarut T1 - Numercial Modelling of Hydrogen Assisted Cracking T2 - 2nd International Conference: Environment- Induced Cracking of Metals (EICM-2), The Banff Centre CY - Banff, Canada DA - 2004-09-19 PY - 2004 AN - OPUS4-4970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Böllinghaus, Thomas A1 - Mente, Tobias A1 - Wongpanya, Pornwasa A1 - Viyanit, Ekkarut A1 - Steppan, Enrico ED - Böllinghaus, Thomas ED - Lippold, J. C. ED - Cross, C. E. T1 - Numerical modelling of hydrogen assisted cracking in steel welds N2 - Hydrogen assisted stress corrosion and cold cracking represent still a major topic regarding the safety of welded steel components against failure in many industrial branches. Hydrogen might be introduced during fabrication welding or might be taken up from an environment during sour service or at cathodic protection. Additionally, understanding and avoidance of hydrogen entry into weld microstructures from gaseous pressurized environments becomes increasingly important for renewable energy components. There are two types of metallurgical mechanisms associated with hydrogen assisted cracking, i.e. the cracking as well as hydrogen transport and trapping mechanisms. For numerical modelling, it has to be considered that both types are not independent of each other, that the mechanisms are not yet completely clarified and that validation of such models strongly depends on implementation of the correct hydrogen related materials properties. However, quite significant achievements have been made in modelling of hydrogen assisted cracking by indirect coupling of thermal, stress-strain as well as hydrogen uptake and diffusion analyses. After a brief introduction into the subject and by revisiting various proposed cracking mechanisms, the present contribution focuses on recent developments of a numerical model based on a comparison of actual hydrogen concentrations and mechanical loads with respective hydrogen dependent material properties as crack initiation and propagation criteria. The basic procedure for numerical simulation of crack initiation and propagation is outlined and it is shown how such numerical simulations can be validated experimentally. Furthermore, it is highlighted how such a procedure has been extended to a comprehensive model for life time prediction of welded steel pipeline components and experimentally verified. Finally, it is outlined how the model can be extended to simulate cracking in heterogeneous steel microstructures on the different scales. KW - hydrogen assisted cracking KW - numerical simulation KW - supermartensitic stainless steel KW - high strength low alloyed structural steel KW - duplex stainless steel PY - 2016 UR - http://link.springer.com/chapter/10.1007%2F978-3-319-28434-7_18 UR - http://www.springer.com/us/book/9783319284323 SN - 978-3-319-28432-3 SN - 978-3-319-28434-7 DO - https://doi.org/10.1007/978-3-319-28434-7_18 SP - Part VI, 383 EP - 439 PB - Springer International Publishing CY - Switzerland ET - 1 AN - OPUS4-35593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -