TY - JOUR A1 - Sobina, E. A1 - Zimathies, Annett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Wang, H. A1 - Mizuno, K. A1 - Devoille, L. A1 - Steel, E. A1 - Ceyhan, A. A1 - Sadak, E. ED - Sobina, E. T1 - Final report of CCQM-K153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) N2 - CCQM key comparison K-153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area) of nonporous substances (sorbents, ceramics, catalytic agents, etc) used in advanced technology. In this key comparison, a commercial nonporous silicon dioxide was supplied as a sample. Eight NMIs participated in this key comparison, but only five NMI's have reported in time. All participants used a gas adsorption method, here nitrogen and (or) krypton adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption nitrogen and krypton, BET specific surface area were established. KW - Nonporous SiO2 KW - Specific Adsorption of N-2 and Kr KW - BET specific surface area PY - 2019 DO - https://doi.org/10.1088/0026-1394/56/1A/08013 VL - 56 IS - 1A SP - 08013 PB - IOP publishing Ltd CY - Bristol, UK AN - OPUS4-50358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Lüdicke, M. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymer Capsules with Volatile Organic Compounds as Reference Materials for Controlled Emission N2 - Encapsulation of volatile organic compounds (VOCs) that could evaporate at a defined rate is of immense interest for application in emission reference materials (ERMs). Polyurethane/polyurea microcapsules with various VOC active ingredients (limonene, pinene, and toluene) were successfully produced by interfacial polymerization with Shirasu porous glass membrane emulsification in a size range between 10 and 50 μm. The effect of surfactant, VOC, monomer(s) type, and ratio has a great effect on the formulation process and morphology of capsules. The type of VOC played a significant role in the encapsulation efficiency. Due to the difference in vapor pressure and VOC/water interfacial tension, the formulation for encapsulation was optimized for each individual VOC. Furthermore, to achieve effective stability of the large droplets/capsules, a combination of ionic and nonionic surfactants was used. Optical and scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were used to characterize the optimized microcapsules. The results showed that the obtained microcapsules exhibited a spherical shape and core–shell morphology and featured characteristic urethane-urea bonds. The amount of encapsulated VOC ranges between 54 and 7 wt %. The emission tests were performed with the help of the emission test chamber procedure (EN 16516). The limonene-loaded polyurethane/polyurea microcapsules show a change in emission rate of less than 10% within 14 days and can be considered as a potential candidate for use as an ERM. KW - Polymer microcapsules KW - Membrane emulsification KW - Polyaddition KW - Volatile organic compound (VOC) KW - Emission testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-619227 DO - https://doi.org/10.1021/acsami.4c12826 SN - 1944-8252 VL - 16 IS - 50 SP - 69999 EP - 70009 PB - ACS AN - OPUS4-61922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymeric Capsules with VOCs for Controlled Emission N2 - Micro-(nano-)encapsulation technology involves building of a barrier between the core and the environment and offers a number of benefits to preserve the functional and physicochemical properties of core material. Tremendous progress has been made in synthesizing well-defined capsules to achieve desired properties such as particle size, chemical composition, and controlled release of the payload. Encapsulation of volatile organic compounds (VOCs) that could evaporate with a defined rate is of immense interest for application in emission reference materials (ERM). These are urgently needed for quality assurance and quality control purposes (QA/QC) required by test standards for the determination of chemical emissions of construction and other materials for interior use. As such ERMs are hardly available on the market, the EU-funded EMPIR project MetrIAQ [1] was started to fill this gap by developing a material with temporally constant emission of VOCs typically found in indoor air. Different capsules in a size range between 5 and 50 μm were synthesized through an interfacial polyaddition/polycondensation reaction in direct (water-in-oil) system. As VOC several types of hydrophobic liquid materials were used. After synthesis, the morphology and physicochemical properties of capsules were characterized by electron microscopy, FTIR and DSC/TGA. An encapsulation efficiency up to 90% could be reached. The emission kinetic of volatile agents was studied in emission test chambers at 23 °C and 50% RH for 14 days. First results indicate that variation of the cross-linking grade of the shell material is one important parameter to adjust the desired emission rate. The overall aim is to achieve a consistent emission profile that decreases by less than 10 % over a target period of at least 14 days. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Crete, Greece DA - 04.09.2022 KW - Capsules KW - Volatile organic compound KW - Polymer KW - Material emissions KW - Reference materials PY - 2022 AN - OPUS4-56039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -