TY - CONF A1 - Ullner, Robert A1 - Reimann, E. T1 - Effect and measurement of the machine compliance in the macro range of instrumented indentation test T2 - XVIII IMEKO World Congress CY - Rio de Janeiro, Brazil DA - 2006-09-17 KW - Indentation KW - Compliance KW - Uncertainty PY - 2006 SP - 1 EP - 6(?) PB - Letra Capital Ed. CY - Rio de Janeiro AN - OPUS4-13987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ullner, Christian A1 - Reimann, E. A1 - Kohlhoff, Harald A1 - Subaric-Leitis, Andreas T1 - Effect and measurement of the machine compliance in the macro range of instrumented indentation test N2 - The contribution concerns the strong effect of the machine compliance in the upper macro range of the instrumented indentation test on hard materials. To achieve a minimum uncertainty in determination of the machine compliance the measurement and analysis needed for the determination are studied in detail. Based on the assumption that the hardness and/or the indentation modulus are force independent, four methods on the determination of the machine compliance are described. Experimental results of a commercial testing machine up to 2500 N and of a standard machine up to 200 N are analyzed. The results show that the uncertainty of the compliance is usually higher than requested for a precisely enough determination of hardness and further materials parameters. Especially for the calibration of reference materials with high hardness and/or Young’s modulus, the machine compliance should be limited in ISO 14577 part 3, 2003 [1]. KW - Instrumented indentation test KW - Compliance KW - Uncertainty PY - 2010 DO - https://doi.org/10.1016/j.measurement.2009.09.009 SN - 0263-2241 SN - 1873-412X VL - 43 IS - 2 SP - 216 EP - 222 PB - The Institute of Measurement and Control CY - London AN - OPUS4-20671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirilina, E. A1 - Helbling, S. A1 - Morawski, M. A1 - Pine, K. A1 - Reimann, K. A1 - Jankuhn, S. A1 - Dinse, J. A1 - Deistung, A. A1 - Reichenbach, J. R. A1 - Trampel, R. A1 - Geyer, S. A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Arendt, T. A1 - Bazin, P.-L. A1 - Weiskopf, N. T1 - Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping N2 - Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber–rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans. KW - Magnetic resonance imaging KW - Laser ablation KW - ICP-MS KW - Brain KW - Imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514430 DO - https://doi.org/10.1126/sciadv.aaz9281 SN - 2375-2548 VL - 6 IS - 41 SP - eaaz9281 PB - American Association for the Advancement of Science (Science/AAAS) CY - Washington, DC, USA AN - OPUS4-51443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, S. A1 - Borde, T. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kader, A. A1 - Schulze, D. A1 - Buchholz, R. A1 - Kaufmann, Jan Ole A1 - Karst, U. A1 - Schellenberger, E. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Assessment of the hepatic tumor extracellular matrix using elastin‑specific molecular magnetic resonance imaging in an experimental rabbit cancer model N2 - To investigate the imaging performance of an elastin-specific molecular magnetic resonance imaging (MRI) probe with respect to the extracellular matrix (ECM) in an experimental hepatic cancer model. Twelve rabbits with hepatic VX2 tumors were examined using 3 T MRI 14, 21, and 28 days after tumor implantation for two subsequent days (gadobutrol, day 1; elastin-specific probe, day 2). The relative enhancement (RE) of segmented tumor regions (central and margin) and the peritumoral matrix was calculated using pre-contrast and delayed-phase T1w sequences. MRI measurements were correlated to histopathology and element-specific and spatially resolved mass spectrometry (MS). Mixed-model analysis was performed to assess the performance of the elastin-specific probe. In comparison to gadobutrol, the elastin probe showed significantly stronger RE, which was pronounced in the tumor margin (day 14–28: P ≤ 0.007). In addition, the elastin probe was superior in discriminating between tumor regions (χ2(4) = 65.87; P < 0.001). MRI-based measurements of the elastin probe significantly correlated with the ex vivo elastinstain (R = .84; P <0 .001) and absolute gadolinium concentrations (ICP-MS: R = .73, P <0 .01). LA-ICP-MS imaging confirmed the colocalization of the elastin-specific probe with elastic fibers. Elastin-specific molecular MRI is superior to non-specific gadolinium-based contrast agents in imaging the ECM of hepatic tumors and the peritumoral tissue. KW - Elastin-specific molecular agent KW - Extracellular matrix KW - Hepatocellular carcinoma KW - Inductively coupled plasma mass spectroscopy KW - Laser ablation-inductively coupled plasma-mass spectrometry KW - Magnetic resonance imaging KW - MR imaging KW - ESMA KW - Gadolinium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517360 DO - https://doi.org/10.1038/s41598-020-77624-8 VL - 10 IS - 1 SP - 20785 PB - Nature AN - OPUS4-51736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Motzkus, C. A1 - Macé, T. A1 - Gaie-Levrel, F. A1 - Ducourtieux, S. A1 - Delvallee, A. A1 - Dirscherl, K. A1 - Hodoroaba, Vasile-Dan A1 - Popov, I. A1 - Kuselman, I. A1 - Popov, O. A1 - Takahata, K. A1 - Ehara, K. A1 - Ausset, P. A1 - Maillé, M. A1 - Michielsen, N. A1 - Bondiguel, S. A1 - Gensdarmes, F. A1 - Morawska, L. A1 - Johnson, G.R. A1 - Faghihi, E.M. A1 - Kim, C.S. A1 - Kim, Y.H. A1 - Chu, M.C. A1 - Guardado, J.A. A1 - Salas, A. A1 - Capannelli, G. A1 - Costa, C. A1 - Bostrom, T. A1 - Jämting, A.K. A1 - Lawn, M.A. A1 - Adlem, L. A1 - Vaslin-Reimann, S. T1 - Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study N2 - Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—'Properties of Nanoparticle Populations' of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 'Techniques for characterizing size distribution of airborne nanoparticles'. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed. KW - Scanning and transmission electron microscopies KW - Atomic force microscopy KW - Scanning mobility particle size spectrometers KW - Metrological traceability KW - SiO2 nano-aerosol size distribution KW - Interlaboratory comparison PY - 2013 DO - https://doi.org/10.1007/s11051-013-1919-4 SN - 1388-0764 SN - 1572-896X VL - 15 IS - 1919 SP - 1 EP - 36 PB - Kluwer CY - Dordrecht AN - OPUS4-29318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -