TY - CONF A1 - Tschirschwitz, Rico A1 - Schröder, Volkmar A1 - Brandes, E. A1 - Krause, U. T1 - Determination of explosion limits - criterion for ignition under non-atmospheric conditions T2 - X ISHPMIE - 10th International symposium on hazards, prevention, and mitigation of industrial explosions CY - Bergen, Norway DA - 2014-06-10 KW - Explosion limits KW - Ignition criterion KW - Standardization KW - Non-atmospheric conditions PY - 2014 SN - 978-82-999683-0-0 SP - 291 EP - 302 AN - OPUS4-31299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Schröder, Volkmar A1 - Brandes, E. A1 - Krause, U. T1 - Determination of explosion limits - Criterion for ignition under non-atmospheric conditions N2 - Many industrial processes are run at non-atmospheric conditions (elevated temperatures and pressures, other oxidizers than air). To judge whether and if yes to what extent explosive gas(vapor)/air mixtures will occur or may be generated during malfunction it is necessary to know the safety characteristic data at the respective conditions. Safety characteristic data like Explosion limits, are depending on pressure, temperature and the oxidizer. Most of the determination methods are standardized for ambient conditions. In order to obtain determination methods for non-atmospheric conditions, particularly for higher initial pressures, reliable ignition criteria were investigated. Ignition tests at the explosion Limits were carried out for mixtures of methane, propane, n-butane, n-hexane, hydrogen, ammonia and acetone in air at initial pressures up to 20 bar. The tests have been evaluated according to different ignition criteria: visual flame propagation, temperature and pressure rising. It could be shown that flame propagation and occasionally self-sustained combustion for several seconds occurred together with remarkable temperature rise, although the pressure rise was below 3%. The results showed that the combination of a pressure rise criterion of 2% and a temperature rise criterion of 100 K seems to be a suitable ignition criterion for the determination of explosion limits and limiting oxidizer concentration at higher initial pressures and elevated temperatures. The tests were carried out within the framework of a R&D project founded by the German Ministry of Economics and Technology. KW - Explosion limits KW - Ignition criterion KW - Standardization KW - Non-atmospheric conditions PY - 2015 DO - https://doi.org/10.1016/j.jlp.2015.01.012 SN - 0950-4230 VL - 36 SP - 562 EP - 568 PB - Elsevier CY - Amsterdam AN - OPUS4-36954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, Daniel A1 - Kromer, C. A1 - Krause, B. C. A1 - Dreiack, N. A1 - Kriegel, F. L. A1 - Kozmenko, E. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Bierkandt, F. S. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Nanomaterial Characterization in Complex Media - Guidance and Application N2 - A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity. KW - Nanon KW - Characterization KW - SpICP-MS KW - Matrix KW - Dissolution PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572138 DO - https://doi.org/10.3390/nano13050922 VL - 13 IS - 5 SP - 1 EP - 19 AN - OPUS4-57213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werrel, Martin A1 - Deubel, Jan A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Antonatus, E. A1 - Krause, U. A1 - Duerler, F. T1 - Use and benefit of a controlled-atmosphere cone calorimeter N2 - A controlled-atmosphere cone calorimeter that is built by modifying the Standard apparatus with the addition of a controlled-atmosphere chamber offers a time- and cost-saving approach for reaction-to-fire testing in vitiation- and ventilation-controlled atmospheres. Due to the design of the added enclosure no mechanical changes on cone calorimeter’s Standard ductwork are required. This offers some advantages but also important limitations. The design has an open connection between the outlet of the added enclosure and the cone calorimeter’s exhaust hood. Therefore, sufficient ambient air from the laboratory surroundings is drawn into the System to introduce effects which have the potential to affect test results significantly. A procedure which is is suitable to consider physical effects of the ambient air on the calculation of the heat release rate is presented as well as initial results of an application towards toxic potency assessment. Signs for Chemical effects of the ambient air such as post reactions are shown but subject of an ongoing work. T2 - Fire and materials 2013 - 13th International conference and exhibition CY - San Francisco, CA, USA DA - 28.01.2013 KW - Controlled-atmosphere cone calorimeter KW - Heat release rate KW - Oxygen consumption KW - Smoke toxicity PY - 2013 SP - 273 EP - 286 PB - Interscience Communications CY - London, UK AN - OPUS4-27707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Jordan, T. A1 - Askar, Enis A1 - Holtappels, Kai A1 - Jopen, M. A1 - Stoll, U. A1 - Reinecke, E.-A. A1 - Krause, U. A1 - Beyer, M. A1 - Markus, D. T1 - Fuels – Introduction | Hydrogen safety N2 - The introduction of hydrogen as a safe energy carrier needs a robust knowledge base, tools for the design and safety assessment of hydrogen technologies built on it, and an internationally harmonized set of standards and regulations. Many of the innovative technologies imply hydrogen at high pressures and/or cryogenic temperatures, with which private users come into contact for the first time in distributed applications. In order to avoid over-conservative, expensive safety solutions, while at the same time demonstrating the usability and safety of hydrogen applications and maintaining acceptance for the technology, safety research must also keep pace with, or better yet anticipate, trends in technological development. Thus, this overview article describes not only the current state of knowledge and technology regarding hydrogen safety, but also its further development. KW - Explosion protection KW - Accidental scenarios KW - Hazard and risk assessment KW - Regulations codes and standards (RCS) KW - Ignition KW - Hydrogen storage KW - Energy carrier PY - 2024 SN - 978-0-1240-9547-2 DO - https://doi.org/10.1016/B978-0-323-96022-9.00195-X VL - 2nd Edition SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jordan, T. A1 - Askar, Enis A1 - Holtappels, Kai A1 - Deeg, S. A1 - Jopen, M. A1 - Stoll, U. A1 - Reinecke, E.-A. A1 - Krause, U. A1 - Beyer, M. A1 - Markus, D. T1 - Stand der Kenntnisse und Technik bezüglich Wasserstoffsicherheit N2 - Die Einführung von Wasserstoff als sicherer Energieträger braucht eine robuste Wissensbasis, darauf aufgebaute Werkzeuge zur Auslegung und Sicherheitsbewertung von Wasserstofftechnologien und ein international harmonisiertes Regelwerk. Viele der innovativen Technologien implizieren Wasserstoff bei hohen Drücken und/oder kryogenen Temperaturen, mit denen in verteilten Anwendungen erstmalig private Nutzer in Kontakt kommen. Um überkonservative, teure Sicherheitslösungen zu vermeiden, gleichzeitig aber die Einsetzbarkeit und Sicherheit von Wasserstoffanwendungen zu demonstrieren und die Akzeptanz für die Technologie aufrecht zu halten, muss auch die Sicherheitsforschung mit den Trends der technologischen Entwicklung Schritt halten, oder sie besser noch antizipieren. So beschreibt dieser Überblicksartikel nicht nur den gegenwärtigen Stand der Kenntnisse und Technik bezüglich Wasserstoffsicherheit, sondern auch ihre Weiterentwicklung. KW - Alternative Energieträger KW - Explosionsschutz KW - Flüssigwasserstoff KW - Unfallszenarien KW - Wasserstoffspeicherung KW - Sicherheitsbewertung KW - Regelsetzung KW - Gefährdungs- und Risikobeurteilung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593629 DO - https://doi.org/10.1002/cite.202300141 SN - 0009-286X VL - 96 IS - 1-2 SP - 1 EP - 20 PB - Wiley-VCH AN - OPUS4-59362 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -