TY - JOUR A1 - Mohamed, W. A. A. A1 - Famy, Alaa A1 - Helal, A. A1 - Ahmed, E. A. E. A1 - Elsayed, B. A. A1 - Kamoun, E. A. A1 - Gad, E. A. M. T1 - Degradation of local Brilliant Blue R dye in presence of polyvinylidene fluoride/MWCNs/TiO2 as photocatalysts and plasma discharge N2 - The need of clean water and the water-poor are increasing daily in the world. In addition, we are facing a dramatic increase in the industrial pollutions of rivers and groundwater, which led us to find a new way to treat industrial pollutants. The plasma discharge technique is one of the important, safe, and applicable for industrial wastewater decontamination. Decolorization of Brilliant Blue R (BBR) dye as a hazard material was noticed when the contaminated solution was exposed to the plasma discharge technique. The combination between the nonthermal plasma and catalysts was evaluated in this work to optimize the degradation efficiency. The PVDF/(MWCNTs/TiO2) as three system composites was employed to enhance the nonthermal plasma performance. The surface area, phase purity, shape, and photonic efficiency were characterized employing XRD, FTIR, SEM, DSC, and UV–Vis. techniques. The obtained results of degradation using NTP technique in presence of the PVDF/MWCNTs catalyst have been enhanced the BBR dye degradation by 19% than only plasma treatment for 20 min. The durability processes of prepared PVDF/(MWCNTs/TiO2) was investigated and evaluated until 8 solar photocatalytic process repeating times. KW - Brilliant Blue R KW - MWCNT KW - PVDF PY - 2022 DO - https://doi.org/10.1016/j.jece.2021.106854 VL - 10 IS - 1 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-54386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdel-Wakil, W. A1 - Fahmy, Alaa A1 - Kamoun, E. A1 - Hassan, W. A1 - Abdelhai, Q. A1 - Salama, T. T1 - A New Route for Synthesis of Polyurethanevinyl Acetate Acrylate Emulsions as Binders for Pigment Printing of Cotton Fabrics N2 - Herein, two polyurethane oligomers were successfully synthesized using a prepolymer mixing process. The prepolymers were synthesized based on the step-growth addition polymerization of polypropylene glycol, Methylene diphenyl diisocyanate and 2-hydroxyethyl methacrylate or 2-hydroxyethyl acrylate. Isopropanol was functioned as the isocyanate blocking agent. Thereafter, different terpolymer emulsions were prepared by the emulsion graft copolymerization with the vinyl acetate monomer in presence of 2-ethylhexyl acrylate as a vinyl monomer. The chemical structures of the synthesized oligomeric monomers were probed by FTIR spectroscopy and found to vary with the content of acrylic monomer used in the oligomer synthesis phase (i.e.hydroxyethyl acrylate or hydroxyethyl methacrylate). The topography, thermal stability, and particle size of terpolymers were investigated by SEM, TGA, and zeta potential, respectively. The TGA results demonstrated marked enhancement in thermal stability of the synthesized terpolymers up to ca. 600°C, which was concurrent with enhanced surface homogeneity and film properties as evidenced by the SEM images. These terpolymers showed also property enhancement as binders for textile pigment printing in terms of rubbing resistance, color strength and fastness to washing when compared to the commercial binders. These judgments would provide a new competent synthesis route by introducing polyurethane acetate vinyl acrylate as the binder for use in pigment printing of cotton fabrics. KW - Vinyl monomer KW - Polyurethane acetate vinyl acrylate KW - Surface coating KW - Terpolymer KW - Textile binder PY - 2020 DO - https://doi.org/10.21608/ejchem.2020.21712.2292 VL - 63 IS - 3 SP - 1063 EP - 1073 AN - OPUS4-52300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -