TY - JOUR A1 - García-Acosta, B. A1 - Albiach-Martí, X. A1 - García, E. A1 - Gil, R. A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut A1 - Sancenón, F. A1 - Soto, J. T1 - Coordinative and electrostatic forces in action: from the design of differential chromogenic anion sensors to selective carboxylate recognition N2 - A new family of differential chromogenic anion chemosensors is described based on anilinopyridine–metal cation coordinative signalling ensembles KW - Differentielle Sensoren KW - Anionen KW - Carboxylat KW - Chromogene Sensoren KW - Koordinative Bindungen KW - Elektrostatische Wechselwirkungen PY - 2004 DO - https://doi.org/10.1039/b314997h SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x IS - 7 SP - 774 EP - 775 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-3438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-Acosta, B. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Soto, J. A1 - Rurack, Knut A1 - Spieles, Monika A1 - García-Breijo, E. A1 - Gil, L. T1 - Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines: Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses N2 - A family of N-crowned 4-p-(aminophenyl)-2,6-diphenylpyridines DA (1-6) has been synthezised, characterized, and studied as potential hosts for the signaling of cationic and anionic guests. The ditopic probes contain two coordination sites, a monodentate 2,6-diphenylpyridine and an anilino group with macrocycles of different ring size, denticity, and type of secondary heteroatom (O and/or S). X-ray structure analysis of aza-oxa-thia-crowned 5 indicated a largely planar chromophore. Optical spectroscopic and electrochemical studies revealed that the anilino-type donor (D) and the 2,6-diphenylpyridine acceptor (A) are strongly -conjugated, entailing intense intramolecular charge-transfer absorption bands at 340 nm. Binding studies with protons and metal ions (M = Cu2+, Zn2+, Hg2+, Fe3+, Pb2+, Ni2+, Cd2+) showed shifts of the band to the visible (440 nm) when coordination at the pyridine group occurs, strengthening its acceptor character. In contrast, no band in the visible is formed if binding takes place at the anilino group. Three different responses were found for various pairs of DA and M: selective metal coordination to D or A as well as coordination at both sites. A selective response was found for 5 and Hg2+. Because of the multitude of coordination-induced effects, the DA-M ensembles were further employed for differential anion sensing. In this protocol, the addition of an anion X to a certain, weakly coordinated DA-M can (i) lead to the formation of a ternary ion pair complex (DA-M-X), (ii) change the preference for A or D coordination, (iii) induce dissociation of the complex, or (iv) can have no effect. Various patterns of absorption changes were obtained as a result of different responses (i)-(iv) of the DA-M's in the presence of various X's. Data analysis yielded recognition patterns for acetate, F- and CN-, demonstrating the potential of simple chromogenic host-guest pairs for differential anion signaling. KW - Fluoreszenz KW - Absorption KW - Molekular Logik KW - Farbstoffe PY - 2007 DO - https://doi.org/10.1021/ic062069z SN - 0020-1669 SN - 1520-510X VL - 46 IS - 8 SP - 3123 EP - 3135 PB - American Chemical Society CY - Washington, DC AN - OPUS4-16084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - Ithaca, NY AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Burlet, H. A1 - McColvin, G. A1 - Henderson, M. B. A1 - Garcia, J. C. A1 - Peteves, S. A1 - Klingelhöffer, Hellmuth A1 - Maldini, M. A1 - Klotz, U. E. A1 - Luthi, T. A1 - Wilcock, I. M. ED - Strang, A. T1 - Microstructural and Mechanical Performance Assessment of Diffusion Bonded Bimetallic Model Discs T2 - 6th International Charles Parsons Turbine Conference CY - Dublin, Ireland DA - 2003-09-16 PY - 2003 SN - 1-904350-20-8 SN - 1366-5510 N1 - Serientitel: Book / The Institute of Materials, Minerals and Mining – Series title: Book / The Institute of Materials, Minerals and Mining IS - 800 SP - 735 EP - 748 PB - Maney CY - London AN - OPUS4-2823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Zhang, B. A1 - Solórzano, E. A1 - Garcia-Moreno, F. T1 - Note: X-ray radiography for measuring chemical diffusion in metallic melts N2 - A x-ray radioscopy technique for measuring in situ chemical diffusion coefficients in metallic melts is presented. The long-capillary diffusion measurement method is combined with imaging techniques using microfocus tubes and flat panel detectors in order to visualize and quantitatively analyze diffusive mixing of two melts of different chemical composition. The interdiffusion coefficient as function of temperature and time is obtained by applying Fick’s diffusion laws. Tracking the time dependence of the mean square penetration depth of the mixing process allows to detect changes in the mass transport caused by convective flow. The possibility to sort out convective mass transport contributions from analysis enhances significantly the accuracy compared to the conventional long-capillary diffusion measurement method with postmortem analysis. The performance of this novel diffusion measurement method with x-ray radiography technique is demonstrated by a diffusion experiment in an Al-Ni melt. KW - Diffusion KW - Metal KW - Aluminium KW - Nickel KW - Melt KW - In-situ KW - Radiography KW - Capillary KW - Aluminium-alloys KW - Chemical analysis KW - Chemical interdiffusion KW - Convection KW - Liquid alloys KW - Mass transfer KW - Nickel alloys KW - X-ray apparatus PY - 2010 DO - https://doi.org/10.1063/1.3427256 SN - 0034-6748 SN - 1089-7623 VL - 81 SP - 056104-1 - 056104-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Garcia-Ruiz, J. M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - Verdugo-Escamilla, E. T1 - A comprehensive methodology for monitoring evaporitic mineral precipitation and hydrochemical evolution of saline lakes: The case of Lake Magadi soda brine (East African Rift Valley, Kenya) N2 - Lake Magadi, East African Rift Valley, is a hyperalkaline and saline soda lake highly enriched in Na+, K+, CO32–, Cl–, HCO3–, and SiO2 and depleted in Ca2+ and Mg2+, where thick evaporite deposits and siliceous sediments have been forming for 100 000 years. The hydrogeochemistry and the evaporite deposits of soda lakes are subjects of growing interest in paleoclimatology, astrobiology, and planetary sciences. In Lake Magadi, different hydrates of sodium carbonate/bicarbonate and other saline minerals precipitate. The precipitation sequence of these minerals is a key for understanding the hydrochemical evolution, the paleoenvironmental conditions of ancient evaporite deposits, and industrial crystallization. However, accurate determination of the precipitation sequence of these minerals was challenging due to the dependency of the different hydrates on temperature, water activity, pH and pCO2, which could induce phase transformation and secondary mineral precipitation during sample handling. Here, we report a comprehensive methodology applied for monitoring the evaporitic mineral precipitation and hydrochemical evolution of Lake Magadi. Evaporation and mineral precipitations were monitored by using in situ video microscopy and synchrotron X-ray diffraction of acoustically levitated droplets. The mineral patterns were characterized by ex situ Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. Experiments were coupled with thermodynamic models to understand the evaporation and precipitation-driven hydrochemical evolution of brines. Our results closely reproduced the mineral assemblages, patterns, and textural relations observed in the natural setting. Alkaline earth carbonates and fluorite were predicted to precipitate first followed by siliceous sediments. Among the salts, dendritic and acicular trona precipitate first via fractional crystallization─reminiscent of grasslike trona layers of Lake Magadi. Halite/villiaumite, thermonatrite, and sylvite precipitate sequentially after trona from residual brines depleted in HCO3–. The precipitation of these minerals between trona crystals resembles the precipitation process observed in the interstitial brines of the trona layers. Thermonatrite precipitation began after trona equilibrated with the residual brines due to the absence of excess CO2 input. We have shown that evaporation and mineral precipitation are the major drivers for the formation of hyperalkaline, saline, and SiO2-rich brines. The discrepancy between predicted and actual sulfate and phosphate ion concentrations implies the biological cycling of these ions. The combination of different in situ and ex situ methods and modeling is key to understanding the mineral phases, precipitation sequences, and textural relations of modern and ancient evaporite deposits. The synergy of these methods could be applicable in industrial crystallization and natural brines to reconstruct the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and extraterrestrial planets. KW - Crystallization KW - Precipitation KW - Crystals KW - Evaporation KW - Minerals PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546712 DO - https://doi.org/10.1021/acs.cgd.1c01391 SN - 1528-7483 VL - 22 IS - 4 SP - 2307 EP - 2317 PB - ACS Publications CY - Washington, DC AN - OPUS4-54671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - De Souza, C.M.G. A1 - Greiser, Sebastian A1 - Garcia, E. A1 - Quarcioni, V.A. A1 - Jäger, Christian ED - Bílek, V. ED - Kersner, Z. T1 - Evaluation of pozzolanic reactivity of calcined kaolinite N2 - The need to improve the sustainability and the need for innovation in the cement industry has brought to light the practice of using additives to the cement in order to decrease CO2 emissions in industrial plants and increase the quality of cement in terms of durability and performance. Currently some additives have been employed as granulated blast furnace slag, limestone and pozzolan. The additives give mortar and concrete larger energy efficiency, gain in durability and resistance, contributing to buildings with slender structures and cheaper and durable maintenance. Besides natural pozzolan can be used artificial ones, as calcined clays, and over a range of amorphous aluminates and silicates waste, with highly reactive function as a binder material in the presence of water and calcium hydroxide. Calcined kaolinite clays were characterized using various techniques such as XRD, thermal analysis, and NMR observing 27Al and 29Si nuclei. The results showed that there is a structural modification of the samples, from crystalline to amorphous phases with the increasing of temperature in the calcination process. There is an improving in the reactivity of calcined clays by the range of 600ºC to 750ºC temperature in the reaction with calcium oxide, according to data from Chapelle test, indicating the possibility of using them as additives for cement and confirming their pozzolanic potential. T2 - NTCC2014 - International conference on non-traditional cement and concrete CY - Brno, Czech Republic DA - 16.06.2014 KW - Kaolin KW - Pozzolan KW - Calcined clays KW - Cement additive PY - 2014 SN - 978-80-214-4867-4 SP - 225 EP - 228 PB - Novpress AN - OPUS4-31225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De Souza, C.M.G. A1 - Greiser, Sebastian A1 - Garcia, E. A1 - Quarcioni, V.A. A1 - Jäger, Christian T1 - Evaluation of pozzolanic reactivity of calcined kaolinite N2 - The need to improve the sustainability and the need for innovation in the cement industry has brought to light the practice of using additives to the cement in order to decrease CO2 emissions in industrial plants and increase the quality of cement in terms of durability and performance. Currently some additives have been employed as granulated blast furnace slag, limestone and pozzolan. The additives give mortar and concrete larger energy efficiency, gain in durability and resistance, contributing to buildings with slender structures and cheaper and durable maintenance. Besides natural pozzolan can be used artificial ones, as calcined clays, and over a range of amorphous aluminates and silicates waste, with highly reactive function as a binder material in the presence of water and calcium hydroxide. Calcined kaolinite clays were characterized using various techniques such as XRD, thermal analysis, and NMR observing 27Al and 29Si nuclei. The results showed that there is a structural modification of the samples, from crystalline to amorphous phases with the increasing of temperature in the calcination process. There is an improving in the reactivity of calcined clays by the range of 600ºC to 750ºC temperature in the reaction with calcium oxide, according to data from Chapelle test, indicating the possibility of using them as additives for cement and confirming their pozzolanic potential. KW - Kaolin KW - Pozzolan KW - Calcined clays KW - Cement additive PY - 2014 DO - https://doi.org/10.15623/ijret.2014.0325033 SN - 2321-7308 SN - 2319-1163 VL - 3 IS - Special Issue 13 SP - 209 EP - 213 PB - eSAT Publishing House CY - Kothapatnam AN - OPUS4-38719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic surface modification and analysis of titania nanoparticles for self‐assembly in multiple layers N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large‐scale applications. In the present study, self‐assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with, for example, silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3‐aminopropyl)triethoxysilane (APTES) or (3‐aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino‐groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape, and specific surface area have been functionalized. Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), SEM/ energy‐dispersive X‐ray spectroscopy (EDS), XPS, Auger electron spectroscopy (AES), and Time‐of‐Flight (ToF)‐SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. KW - TiO2 KW - Nanoparticles KW - Surface functionalization KW - Layer-by-layer deposition KW - Surface chemical analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508601 DO - https://doi.org/10.1002/sia.6842 SN - 1096-9918 VL - 52 IS - 12 SP - 829 EP - 834 PB - John Wiley & Sons Ltd AN - OPUS4-50860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Miller, A. Z. A1 - Garcia-Sanchez, A. M. A1 - Martin-Sanchez, Pedro Maria A1 - F.C. Pereira, M. A1 - Afonso, M. J. A1 - Saiz-Jimenez, C. A1 - Spangenberg, J. E. A1 - Jurado, V. A1 - Dionísio, A. A1 - Chaminé, H. I. A1 - Hermosin, B. T1 - Origin of abundant moonmilk deposits in a subsurface granitic environment N2 - Subsurface granitic environments are scarce and poorly investigated. A multi-disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north-west Portugal). It is possible that this study is the first record of moonmilk in an urban subsurface granitic environment. The morphology and texture, mineralogical composition, stable isotope composition and microbial diversity of moonmilk deposits have been studied to infer the processes of moonmilk formation. These whitish secondary mineral deposits are composed of very fine needle fibre calcite crystals with different morphologies and density. Calcified filaments of fungal hyphae or bacteria were distinguished by field emission scanning electron microscopy. Stable isotope analysis revealed a meteoric origin of the needle fibre calcite, with an important contribution of atmospheric CO2, soil respiration and HCO3 − from weathering of Ca-bearing minerals. The DNA-based analyses revealed the presence of micro-organisms related to urban contamination, including Actinobacteria, mainly represented by Pseudonocardia hispaniensis, Thaumarchaeota and Ascomycota, dominated by Cladosporium. This microbial composition is consistent with groundwater pollution and contamination sources of the overlying urban area, including garages, petrol stations and wastewater pipeline leakage, showing that the Paranhos tunnel is greatly perturbed by anthropogenic activities. Whether the identified micro-organisms are involved in the formation of the needle fibre calcite or not is difficult to demonstrate, but this study evidenced both abiotic and biogenic genesis for the calcite moonmilk in this subsurface granitic environment. KW - Biomineralization KW - Carbonate precipitation KW - Granite KW - Moonmilk KW - Needle fibre calcite PY - 2017 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/sed.12431 DO - https://doi.org/10.1111/sed.12431 SN - 1365-3091 VL - 65 IS - 2 SP - 1482 EP - 1503 PB - Wiley AN - OPUS4-43622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Borghetti, P. A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, Gabriele A1 - Martra, G. T1 - Organic surface modification and analysis of titania nanoparticles for self-assembly in multiple layers N2 - Parameters of TiO2 coatings can greatly influence their final performance in largescale applications such as photocatalytic measurements, orthopedic and/or dental prostheses, cell cultures, and dye-sensitized solar cells. From different film deposition procedures, self-assembly of TiO2 NPs in multiple layers was selected for systematic characterization. EDX, AES and ToF-SIMS analysis have been carried out in order to evaluate the functionalization of several types of TiO2 NPs differing in size, shape and surface area. KW - TiO2 KW - Nanoparticles KW - Surface modification KW - Functionalization PY - 2017 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/organic-surface-modification-and-analysis-of-titania-nanoparticles-for-selfassembly-in-multiple-layers/66776A4CA7FD059CE39041A99A922D90 DO - https://doi.org/10.1017/S1431927617010029 SN - 1431-9276 SN - 1435-8115 VL - 23 IS - S1 (July) SP - 1872 EP - 1873 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-42457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chronakis, Michail Ioannis A1 - Mavrakis, E. A1 - Alvarez-Fernandez García, R. A1 - Montes-Bayon, M. A1 - Bettmer, J. A1 - Pitta, P. A1 - Tsapakis, M. A1 - Kalantzi, I. A1 - Tsiola, A. A1 - Pergantis, S. An. T1 - Investigating the behavior of ultratrace levels of nanoparticulate and ionic silver in a seawater mesocosm using single particle inductively coupled plasma – mass spectrometry N2 - Silver nanoparticles (AgNPs) nowadays appear in close to 24% of consumer products that contain engineered nanomaterials. Thus, they are expected to be released into the environment, where their fate and effect are still undetermined. Considering the evidenced efficacy of the single particle Inductively Coupled Plasma – Mass Spectrometry (sp ICP-MS) technique in the study of nanomaterials, this work reports on the use of sp ICP-MS along with an online dilution sample introduction system for the direct analysis of untreated and spiked seawater samples, as part of a larger scale experiment studying the fate of Ag (ionic and nanoparticles) in seawater mesocosm systems. Silver nanoparticles coated with branched polyethyleneimine (BPEI@AgNPs) or ionic silver (Ag+) were introduced gradually into the seawater mesocosm tanks at very low, environmentally relevant concentrations (50 ng Ag L− 1 per day, for 10 consecutive days, up to a total of 500 ng Ag L− 1 ), and samples were collected and analyzed daily, within a consistent time window. Using very low detector dwell time (75 μs) and specialized data treatment, information was obtained on the nanoparticles’ size distribution and particle number concentration, as well as the ionic silver content, of both the AgNPs and the Ag+ treated seawater mesocosm tanks. The results for the AgNP treated samples indicated the rapid degradation of the added silver particles, and the subsequent increase of ionic silver, with recoveries close to 100% for the first days of the experiment. On the other hand, particle formation was observed in the Ag+ treated seawater tanks, and even though the number concentration of silver-containing nanoparticles increased throughout the experiment, the amount of silver per particle remained relatively constant from the early days of the experiment. In addition, the online dilution sample introduction system for the ICP-MS proved capable of handling the untreated seawater matrix without significant contamination issues and downtime, while the low dwell time and data treatment procedure developed were shown to be suitable for the analysis of nanomaterials at the low nm-scale, despite the complex and heavy matrix introduced into the ICP-MS. KW - Mesocosm KW - Single-particle KW - Seawater PY - 2023 DO - https://doi.org/10.1016/j.chemosphere.2023.139109 VL - 336 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-57814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolditz, O. A1 - Jacques, D. A1 - Claret, F. A1 - Bertrand, J. A1 - Churakov, S. V. A1 - Debayle, C. A1 - Diaconu, D. A1 - Fuzik, K. A1 - Garcia, D. A1 - Graebling, N. A1 - Grambow, B. A1 - Holt, E. A1 - Idiart, A. A1 - Leira, P. A1 - Montoya, V. A1 - Niederleithinger, Ernst A1 - Olin, M. A1 - Pfingsten, W. A1 - Prasianakis, N. I. A1 - Rink, K. A1 - Sampier, J. A1 - Szöke, I. A1 - Szöke, R. A1 - Theodon, L. A1 - Wendling, J. T1 - Digitalisation for nuclear waste management: predisposal and disposal N2 - Data science (digitalisation and artificial intelligence) became more than an important facilitator for many domains in fundamental and applied sciences as well as industry and is disrupting the way of research already to a large extent. Originally, data sciences were viewed to be well-suited, especially, for data-intensive applications such as image processing, pattern recognition, etc. In the recent past, particularly, data-driven and physics-inspired machine learning methods have been developed to an extent that they accelerate numerical simulations and became directly usable for applications related to the nuclear waste management cycle. In addition to process-based approaches for creating surrogate models, other disciplines such as virtual reality methods and high-performance computing are leveraging the potential of data sciences more and more. The present challenge is utilising the best models, input data and monitoring information to integrate multi-chemical-physical, coupled processes, multi-scale and probabilistic simulations in Digital Twins (DTw) able to mirror or predict the performance of its corresponding physical twins. Therefore, the main target of the Topical Collection is exploring how the development of DTw can benefit the development of safe, efficient solutions for the pre-disposal and disposal of radioactive waste. A particular challenge for DTw in radioactive waste management is the combination of concepts from geological modelling and underground construction which will be addressed by linking structural and multi-physics/chemistry process models to building or tunnel information models. As for technical systems, engineered structures a variety of DTw approaches already exist, the development of DTw concepts for geological systems poses a particular challenge when taking the complexities (structures and processes) and uncertainties at extremely varying time and spatial scales of subsurface environments into account. KW - Data science KW - Digitalization KW - Nuclear waste KW - Disposal KW - Predisposal PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569387 DO - https://doi.org/10.1007/s12665-022-10675-4 SN - 1866-6280 VL - 82 IS - 1 SP - 1 EP - 11 PB - Springer AN - OPUS4-56938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pirker, F. A1 - Toth, I. A1 - Cihak-Bayr, U. A1 - Grundtner, R. A1 - Vernes, A. A1 - Benedicto, J. A1 - Spaltmann, Dirk A1 - Gradt, Thomas A1 - Alberdi, A. A1 - Alonso, I. A1 - Bayón, R. A1 - Igartua, A. A1 - García, Á. A1 - Pagano, F. A1 - Bravo, I. A1 - Kogia, M. A1 - Dykeman, D. A1 - Liedtke, S. A1 - Minami, I. A1 - Nyberg, E. A1 - Soivio, K. A1 - Ronkainen, H. A1 - Majaniemi, S. A1 - Heino, V. A1 - Gkagkas, K. A1 - Mont, L. A1 - Amigorena, I. T1 - Tribological characterisation services for materials - i-TRIBOMAT N2 - Um den Entwicklungsprozess von neuen Komponenten zu beschleunigen, ist die Vorrausage der Eigenschaften der eingesetzten Werkstoffe im Betrieb der Komponenten von enormer Bedeutung. Um neue Werkstoffe hinsichtlich Ihrer Performance (in einer Komponente) bewerten zu können, ist deshalb die Entwicklung neuer innovativer Methoden notwendig. Diese Methoden können auch unter dem Begriff „lab-to-field“ oder „materials“ – up-scaling zusammengefasst werden. D. h. Werkstoffe werden im Labor charakterisiert, und deren Eigenschaften mittels z.B. Simulation auf die Komponentenperformance hochskaliert (upscaling). i-TRIBOMAT ist ein EU gefördertes Projekt (H2020, GA Nr. 814494) mit dem Ziel ein Open Innovation Test Bed für tribologische Werkstoffcharakterisierung aufzubauen und entsprechende Services von der tribologischen Charakterisierung neuer Werkstoffe bis hin zu Simulationsmodellen zur Vorrausage der Perfomance von Komponenten der Industrie anzubieten. Durch die Bündelung von Knowhow und Infrastruktur zu Charakterisierung sowie den Aufbau einer digitalen Plattform, wird i-TRIBOMAT das weltgrößte Open Innovation Test Bed für tribologische Werkstoffcharakterisierung. N2 - The prediction of the properties of the materials used in the operation of components is of enormous importance, in order to accelerate the development process of new components. To evaluate new materials in terms of their performance (in a component), the development of new innovative methods is necessary. These methods can also be summarized under the term lab-to-field or materials – upscaling, meaning materials being characterised in a laboratory and their properties being upscaled to the component performance by means of e.g. simulation. i-TRIBOMAT is a EU funded project (H2020, GA Nr. 814494) aiming at building an Open Innovation Test Bed for tribological material characterization and offering corresponding services from tribological characterization of new materials to simulation models for predicting the performance of industrial components. By bundling the infrastructure, know-how for characterization and building a digital platform, i-TRIBOMAT becomes the world’s largest open innovation test bed for tribological material characterization. T2 - 22nd International Colloquium Tribology CY - Esslingen, Germany DA - 28.01.2020 KW - Tribologie KW - Lab-to-field up-scaling KW - Werkstoffdatenbank KW - Geteilte Infrastruktur KW - Tribo-Analytik KW - Intelligente tribologische Werkstoffcharakterisierung KW - Lab-to-field upscaling KW - Tribology KW - Intelligent tribological material characterization KW - Materials database KW - Shared infrastruture KW - Tribo-analytics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576762 DO - https://doi.org/10.30419/TuS-2020-0026 SN - 0724-3472 SN - 2941-0908 VL - 67 IS - 5-6 SP - 35 EP - 50 PB - Expert CY - Tübingen AN - OPUS4-57676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-Fernández, J. A1 - Bettmer, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Añón, E. A1 - Montes-Bayón, M. A1 - Sanz-Medel, A. T1 - The fate of iron nanoparticles used for treatment of iron deficiency in blood using mass-spectrometry based strategies N2 - The release of iron from iron nanoparticles (NPs) used as parenteral formulations appears to be influenced by the size and surface properties of the colloidal iron complex and the matrix. A clinically applied product Venofer® has been used as a model formulation to establish adequate analytical strategies to evaluate the fate of iron nanoparticles (NPs) in blood. First, the preparation was characterized by high resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS) and UV-vis absorption spectroscopy. This revealed the presence of monodisperse iron NPs with a hydrodynamic diameter of ∼15 nm and an iron core of ∼4 nm. Venofer® was then incubated with serum and whole blood in a quantitative study on the iron bioavailability from these NPs. Iron was speciated and quantified by using inductively coupled plasma mass spectrometry (ICP-MS). Iron solubilization levels of up to 42% were found in both fluids using isotope dilution of iron for quantification within the first hour of incubation even in the absence of the reticuloendothelial system. The monitoring of the iron-containing proteins present in serum was conducted by highperformance liquid chromatography with ICP-MS detection. It indicated that the dissolved iron ions are bound to transferrin. Quantitative speciation studies using isotope pattern deconvolution experiments concluded that the released iron saturated almost completely (up to 90%) the metal binding sites of transferrin. The remaining iron appeared also associated to albumin and, to a lesser extent, forming smaller sized particles. Thus, the methods presented here provide new insights into the fate of Venofer® nanoparticles and may be applied to other formulations. KW - Iron-sucrose nanoparticles KW - Serum KW - Bioavailability KW - Speciation KW - HPLC KW - ICP-MS PY - 2017 DO - https://doi.org/10.1007/s00604-017-2388-8 SN - 0026-3672 SN - 1436-5073 VL - 184 IS - 10 SP - 3673 EP - 3680 AN - OPUS4-43128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jeschke, H.O. A1 - Garcia, M.E. A1 - Lenzner, Matthias A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Laser ablation thresholds of silicon for different pulse durations: theory and experiment N2 - The ultrafast laser ablation of silicon has been investigated experimentally and theoretically. The theoretical description is based on molecular dynamics (MD) simulations combined with a microscopic electronic model. We determine the thresholds of melting and ablation for two different pulse durations =20 and 500 fs. Experiments have been performed using 100 Ti:Sap-phire laser pulses per spot in air environment. The ablation thresholds were determined for pulses with a duration of 25 and 400 fs, respectively. Good agreement is obtained between theory and experiment. KW - Laser ablation KW - Pulse duration KW - Threshold of silicon PY - 2002 DO - https://doi.org/10.1016/S0169-4332(02)00458-0 SN - 0169-4332 SN - 1873-5584 VL - 197-198 SP - 839 EP - 844 PB - North-Holland CY - Amsterdam AN - OPUS4-6314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -