TY - JOUR A1 - Le, Quynh Hoa A1 - Vestergaard, M.C. A1 - Tamiya, E T1 - Carbon-based nanomaterials in biomass-based fuel-fed fuel cells JF - Sensors N2 - Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field KW - Carbon-based nanomaterials KW - Biofuel cells KW - Biomass KW - Carbon nanotubes KW - Graphene KW - Carbon nanodots PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428226 UR - http://www.mdpi.com/1424-8220/17/11/2587/htm DO - https://doi.org/10.3390/s17112587 SN - 1424-8220 VL - 17 IS - 11 SP - 2587, 1 EP - 2587, 21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-42822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ismail, N. S. A1 - Le, Quynh Hoa A1 - Vu, T. H. A1 - Inoue, Yuki A1 - Yoshikawa, H. A1 - Saito, M. A1 - Tamiya, E. T1 - Electrochemiluminescence Based Enzymatic Urea SensorUsing Nanohybrid of Isoluminol-gold Nanoparticle-graphene Oxide Nanoribbons JF - Electroanalysis N2 - This study evaluates on the possibility of using gold nanoparticles functionalizedwith the luminol derivative N-(aminobutyl)-N-(ethylisoluminol)(ABEI) and hybridizedwith graphene oxidenanoribbons on acarbon based screen-printedelectrode (ABEI-AuNP-GONR/SPE) as an enzymaticelectrochemiluminescence (ECL) urea sensor.The electrocatalytic activity and ECL intensity of ABEI-AuNP-GONR/SPE were found to increase proportionally with the concentrationofurea in the analyte sample,owing to the rise in pH value.These phenomena are attributed to increased formation of luminol monoanion precursors for further electrochemical oxidation,which in turn produce eitherluminol radicals or excited3-amino-phthalate molecules.The luminescence is most likely caused by the interaction of luminol radicals with superoxide radicals formed from dissolved oxygen. Thesensitivity of our sensor was determinedtobe 170.58 mM@1 and 16.23 mM@1 for urea concentrations from 2to5.82 mM and from 5.82 to 30 mM, respectively, coveringthe normal urea level in human blood. KW - Nanomaterials KW - Graphene oxide KW - Biosensors PY - 2017 UR - http://onlinelibrary.wiley.com/doi/10.1002/elan.201600477 DO - https://doi.org/10.1002/elan.201600477 SN - 1040-0397 SN - 1521-4109 VL - 29 IS - 4 SP - 938 EP - 943 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-40970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -