TY - JOUR A1 - Scheurell, K. A1 - Hoppe, E. A1 - Brzezinka, Klaus-Werner A1 - Kemnitz, E. T1 - Bulk and surface properties of highly dispersed VOx/ZrO2, VOx/SiO2 and VOx/TiO2/SiO2 systems and their relevance for propane oxidation N2 - Highly dispersed vanadium-doped metal oxides such as VOx/ZrO2, VOx/SiO2 and VOx/TiO2/SiO2 with vanadium contents between 0 and 25 mole% were prepared by special bulk preparation methods (coprecipitation and sol–gel, followed by freeze-drying). Bulk and surface properties of the obtained mixed oxide solid solutions were thoroughly investigated by different analytical methods (Raman and FTIR spectroscopy, TPD, H2-TPR, oxygen isotope measurements etc.). Moreover, the catalytic behaviour of the oxides was studied for the example of the oxidative dehydrogenation (ODH) of propane to propylene. Independent of the preparation method, the catalytic behaviour of vanadium-doped ZrO2 and TiO2 phases is very similar. Both metal oxide solid solutions are very active in propane ODH whereas the catalytic activity of VOx/SiO2 is relatively low. On the other hand, the reduction of the catalytic activity is accompanied by an improved selectivity for the formation of propylene. The correlation between the catalytic activity and the acidity of the oxide systems is discussed. Oxidation experiments with 18O2 clearly show that the ODH reaction occurs according to the Mars–van Krevelen mechanism. KW - Vanadium-doped metal oxides KW - Solid solutions KW - Coprecipation KW - Sol-gel-method KW - Propan oxidation KW - Catalytic activity KW - Oxygen mobility PY - 2004 DO - https://doi.org/10.1039/b402924k SN - 0959-9428 SN - 1364-5501 VL - 14 IS - 16 SP - 2560 EP - 2568 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-4152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Heise, M. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - New 2D layered structures with direct fluorine-metal bonds: MF(CH3COO) (M: Sr, Ba, Pb) N2 - New coordination polymers with 2D network structures with fluorine directly coordinated to the metal ion were prepared both via mechanochemical synthesis and fluorolytic sol–gel synthesis. Depending on the synthesis route, the samples show different particle sizes, according to SEM imaging. The crystal structures of barium acetate fluoride, strontium acetate fluoride, and lead acetate fluoride (BaFIJCH3COO), SrFIJCH3COO) and PbFIJCH3COO)) were solved from X-ray powder diffraction data. The structure solution is backed by the results from 19F MAS NMR, FT IR data, and thermal analysis. The calculated chemical shifts of the 19F MAS NMR spectra coincide well with the measured ones. It turns out that the grinding conditions have a remarkable influence on the mechanochemical synthesis and its products. Our systematic study also indicates a strong influence of the atomic radii of Ca, Sr, Ba, and Pb on the success of the syntheses. KW - Mechanochemistry KW - Coordination polymers PY - 2020 DO - https://doi.org/10.1039/d0ce00287a VL - 22 IS - 16 SP - 2772 EP - 2780 PB - Royal Society of Chemistry AN - OPUS4-50789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect Wood from termite attack. KW - Wood Protection KW - Nano Particles KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508377 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer AN - OPUS4-50837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hemmann, Felix A1 - Agirrezabal-Telleria, Iker A1 - Kemnitz, E. A1 - Jäger, Christian T1 - Probing slow chemical exchange of pyridine molecules at acid magnesium hydroxide fluoride surfaces by 15N NMR N2 - 15N NMR of pyridine has been used to study Lewis and Brønsted sites at the acid surface of magnesium hydroxide fluoride at two different pyridine loadings with ratios of excess pyridine compared to pyridine molecules bound to Lewis and Brønsted sites of about 1:1 (highly loaded) and 0.15:1 (low loaded), respectively. The Lewis and Brønsted sites can be distinguished by the 15N chemical shift of pyridine at about –100 ppm (LPy) and –175 ppm (BPy). In both samples a very broad 15N resonance is found around –88 ppm assigned to weakly adsorbed (excess) pyridine molecules via hydrogen bridges (HPy). Additionally, another signal at about –49 ppm is observed in the highly loaded sample only representing physisorbed pyridine (PPy). A slow chemical exchange process of strongly bound LPy and BPy molecules with excess HPy and PPy molecules can be monitored using 15N exchange NMR. It takes place on a time scale of about 50–100 ms at room temperature. All pyridine molecules have the same 15N T1 and its value increases from 800 ms (highly loaded sample) to 5.3 s (low loading) hinting on changed pyridine mobility depending on the loading level. KW - Catalysis KW - Acid surfaces KW - 15N NMR KW - Chemical exchange KW - Pyridine PY - 2014 DO - https://doi.org/10.1021/jp405213x SN - 1932-7447 SN - 1089-5639 VL - 117 IS - 28 SP - 14710 EP - 14716 PB - Soc. CY - Washington, DC AN - OPUS4-30439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agirrezabal-Telleria, Iker A1 - Hemmann, Felix A1 - Jäger, Christian A1 - Arias, P. L. A1 - Kemnitz, E. T1 - Functionalized partially hydroxylated MgF2 as catalysts for the dehydration of d-xylose to furfural N2 - Among the furan-based compounds, furfural (FUR) shows interesting properties as building-block or industrial solvent. It is produced from pentosan-rich biomass via xylose cyclodehydration. The current FUR production uses homogeneous catalysts and steam. According to recent studies, the reaction mechanism is different in the presence of Lewis (L) or Brønsted (B) sites. In this work, partially hydroxylated MgF2 catalysts, containing bifunctional Lewis and Brønsted properties, were further functionalized using different fluorosulfonic precursors. Its main objective was to test these solids as catalysts for xylose conversion to furfural. Extensive characterization techniques using TG–MS, 19F-MAS-NMR, or pyridine adsorption confirmed the substitution of surface OH groups by stronger Brønsted sites. The activity data showed a considerable change of the reaction kinetics and a final furfural selectivity of 90% at 160 °C in water/toluene for optimized L/B ratios by the one-step grafting technique. Moreover, the reaction analyses and the change of conversion pathways were studied. KW - Hydroxylated MgF2 KW - Functionalization KW - Fluorosulfonic acid KW - Lewis KW - Brønsted KW - Xylose KW - Furfural PY - 2013 DO - https://doi.org/10.1016/j.jcat.2013.05.005 VL - 305 SP - 81 EP - 91 AN - OPUS4-30444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Mechanochemical synthesis, characterization, and structure determination of new alkaline earth metal-tetrafluoroterephthalate frameworks: Ca(pBDC‑F4 )·4H2O, Sr(pBDC‑F4 )·4H2O, and Ba(pBDC‑F4 ) N2 - New fluorinated alkaline earth metal−organic frameworks were successfully synthesized by milling of metal hydroxides M(OH)2 with tetrafluoroterephthalic acid H2 pBDC-F4. Both calcium- and strontium-tetrafluoroterephthalates are tetrahydrated, while the barium tetrafluoroterephthalate is free of coordinating water molecules. The two isomorphic structures Ca(pBDC-F4)·4H2O and Sr(pBDC-F4)·4H2O were solved from the powder diffraction data by ab initio structure determination and subsequent Rietveld refinement. The products were thoroughly characterized by elemental analysis, thermal analysis, magicangle spinning NMR, Fourier transform infrared spectroscopy, scanning electron microscopy imaging, and Brunauer−Emmett−Teller measurements. Our findings suggest that the mechanochemical synthesis route is a promising approach for the preparation of new fluorinated alkaline earth metal−organic frameworks. KW - Mechanochemistry KW - MOFs KW - XRD PY - 2016 UR - http://pubs.acs.org/doi/abs/10.1021/acs.cgd.5b01457 DO - https://doi.org/10.1021/acs.cgd.5b01457 SN - 1528-7483 VL - 16/4 SP - 1923 EP - 1933 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-35940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524041 DO - https://doi.org/10.1002/zaac.202000360 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Müller, Anja A1 - Dietrich, P. A1 - Thissen, A. A1 - Bahr, S. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Detection of suspended nanoparticles with near-ambient pressure x-ray photoelectron spectroscopy N2 - Two systems of suspended nanoparticles have been studied with near-ambient pressure x-ray photoelectron spectroscopy: silver nanoparticles in water and strontium fluoride—calcium fluoride core-shell nanoparticles in ethylene glycol. The corresponding dry samples were measured under ultra high vacuum for comparison. The results obtained under near-ambient pressure were overall comparable to those obtained under ultra high vacuum, although measuring silver nanoparticles in water requires a high pass energy and a long acquisition time. A shift towards higher binding energies was found for the silver nanoparticles in aqueous Suspension compared to the corresponding dry sample, which can be assigned to a change of surface potential at the water-nanoparticle interface. The shell-thickness of the core-shell nanoparticles was estimated based on simulated spectra from the National Institute of Standards and Technology database for simulation of electron spectra for surface analysis. With the instrumental set-up presented in this paper, nanoparticle suspensions in a suitable Container can be directly inserted into the analysis chamber and measured without prior sample preparation. KW - Nanoparticles KW - Suspensions KW - Core-shell nanoparticles KW - NAP-XPS PY - 2017 DO - https://doi.org/10.1088/1361-648X/aa8b9d SN - 1361-648X SN - 0953-8984 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. VL - 29 IS - 47 SP - 474002, 1 EP - 474002, 9 PB - IOP Publishing CY - UK AN - OPUS4-42951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Strontium-coordination polymers based on tetrafluorophthalic and phthalic acids: mechanochemical synthesis, ab initio structures determination, and spectroscopic characterization N2 - Two strontium-based dicarboxylate systems [Sr(oBDC-F4)(H2O)2] (1) and [{Sr(oBDC)(H2O)2)·H2O] (2) were synthesized mechanochemically via milling of Sr(OH)2·8H2O with tetrafluorophthalic acid (H2oBDC-F4) or phthalic acid (H2oBDC), respectively. The new structures were determined ab initio from the powder X-ray diffraction (PXRD) data. Both compounds 1 and 2 crystallize in the monoclinic space group P21 /c as two-dimensional coordination polymers (2D-CPs). The determined structures were validated by extended X-ray absorption (EXAFS) data. Compounds 1 and 2 show different thermal stabilities. The fluorinated CP 1 is decomposed at 300 °C while the nonfluorinated CP 2 transforms into a new phase after thermal treatment at 400 °C. The two hydrated CPs exhibit small surface areas which increase after the thermal posttreatment for 1 but remains unchanged for the dehydrated sample of 2. Dynamic vapor sorption (DVS) experiments indicate that both the dehydrated and hydrated samples of 2 depict no significant differences in their adsorption isotherms. The DVS of water indicates that the phase transition after thermal posttreatment of 2 is irreversible. KW - Mechanochemistry KW - XRD KW - NMR PY - 2017 DO - https://doi.org/10.1039/c7dt02564e SN - 1477-9226 SN - 1477-9234 VL - 46 IS - 37 SP - 12574 EP - 12587 PB - The Royal Society of Chemistry CY - Cambridge AN - OPUS4-42261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -