TY - JOUR A1 - Tambara, R. F. A1 - Durlo Tambara, Luís Urbano A1 - Venquiaruto, S. D. A1 - Pereira da Costa, F. B. T1 - Evaluation of the mechanical performance and capillary absorption of concretes with incorporation of crystallizing admixtures and subjected to damage at early ages T1 - Avaliação do desempenho mecânico e absorção capilar de concretos com incorporação de aditivos cristalizante submetidos a danos nas primeiras idades N2 - This study assessed the self-healing phenomenon in the mechanical properties and capillary absorption of structural concretes. Two crystalline powder additives were evaluated, dosed according to the manufacturers’ recommendations. Crystalline additives increase the density of the C-S-H gel and form insoluble crystals, effectively blocking fissures. Three concrete mixes were produced: a reference mix, additive-X with 0.8%, and additive-Y with 2.0%, relative to the mass of cement. 75% of the rupture load was applied at 3- and 14-days to induce microfissures for comparison with the reference mix. Subsequently, self-healing was assessed at 28- and 76-days. The property of axial compressive strength was determined at 28-days, revealing that crystalline additives contributed to an average increase of 12% in this property. While the age of loading did not significantly impact axial compressive strength, there were significant variations among the types of additives studied, as indicated by ANOVA. Water absorption properties through capillarity were evaluated at 28- and 76-days, showing an average reduction of 42% in water absorption due to the use of crystalline additives. In conclusion, the inclusion of crystalline additives positively contributed to the self-healing of the studied concretes, suggesting a partial recovery of microfissures. N2 - Esta pesquisa avaliou o fenômeno de autocicatrização nas propriedades mecânicas e absorção capilar de concretos estruturais. Foram avaliados dois aditivos cristalizantes em pó, dosados de acordo com o teor recomendado pelos fabricantes. Aditivos cristalizantes aumentam a densidade do gel C-S-H e formam cristais insolúveis, bloqueando fissuras. Três traços de concreto foram produzidos: referência, aditivo-X com 0,8% e aditivo-Y com 2,0% em relação a massa do cimento. Aplicou-se 75% da carga de ruptura aos 3- e 14-dias para gerar microfissuras e comparar com a referência. Posteriormente, a autocicatrização foi avaliada aos 28- e 76-dias. A propriedade de resistência à compressão axial foi determinada aos 28-dias, revelando que os aditivos cristalizantes contribuíram para um aumento médio de 12% desta propriedade. A idade do carregamento dos concretos não apresentou um impacto significativo na resistência à compressão axial, mas apontou resultados significativos entre os tipos de aditivos estudados, conforme ANOVA. As propriedades de absorção de água por capilaridade foram avaliadas aos 28- e 76-dias, indicando uma redução de absorção de água média de 42% devido ao uso dos aditivos cristalizantes. Em conclusão, a incorporação dos aditivos cristalizantes contribuiu de maneira positiva para a autocicatrização dos concretos estudados, indicando uma recuperação parcial das microfissuras. KW - Self-healing KW - Crystalline admixture KW - Concrete KW - Cracks PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599140 DO - https://doi.org/10.1590/1517-7076-RMAT-2023-0355 SN - 1517-7076 VL - 29 IS - 1 SP - 1 EP - 20 CY - Rio de Janeiro AN - OPUS4-59914 LA - por AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Nikoonasab, Ali A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gluth, Gregor T1 - Determination of the oxidation depths of ground granulated blast furnace slag-containing cement pastes using Mn K-edge X-ray absorption near-edge structure spectroscopy N2 - The redox potential of the pore solution of hardened cements containing ground granulated blast furnace slag (GGBFS) affects reinforcement corrosion and immobilization of radioactive waste. Here, Mn K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to determine the depth profile of the oxidation state of manganese in hardened GGBFS-containing cement pastes. Manganese was oxidized in the outer regions of some of the pastes, but the depth to which this occurred was not identical with the ‘blue-green/white color change front’, usually interpreted as indicating oxidation of sulfur species. For CEM III/B, the color change of the material was gradual and thus unsuitable for a precise determination of the oxidation depth, while for the alkali-activated slag, a distinct color change front was found, but full oxidation of manganese and sulfur had not occurred in the brighter region. Mn K-edge XANES spectroscopy is thus a more reliable method than the determination of the visual color change front to follow the ingress of the oxidation front. KW - Manganese KW - Oxidation KW - Sulfide KW - Alkali-activated materials KW - Redox conditions PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651469 DO - https://doi.org/10.1111/jace.70445 SN - 0002-7820 SN - 1551-2916 VL - 109 IS - 1 SP - 1 EP - 11 PB - Wiley CY - Oxford AN - OPUS4-65146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Silva, T. R. A1 - Matos, P. R. de A1 - Durlo Tambara, Luís Urbano A1 - Marvila, M. T. A1 - de Azevedo, A. R. G. T1 - A review on the performance of açaí fiber in cementitious composites: Characteristics and application challenges N2 - This paper aimed to perform an exploratory literature review, focusing on the aspects of hydration and rheological properties of cementitious composites with açaí fibers. The use of natural fibers as a reinforcement in cementitious matrices has been widely studied, and açaí fiber is a promising option due to its unique characteristics. However, there is still a lack of knowledge regarding the correlation between fiber parameters and the technological properties of composites, which limits the development of new applications, such as 3D printing. The review provided an overview of the main characteristics of açaí fibers and the parameters for their application in cementitious matrices. Alkali treatment with 5% NaOH solution for 1 h shows increased mechanical and physical properties in açaí fibers. Despite the potential advantages of these composites, they pose challenges due to the different fiber surface treatment and interfacial transitions and the processing conditions of the fibers. Although small addition of açaí fibers slightly decreases the cement hydration process, keeping the cross-compatibility index high (>95). To overcome these challenges, it is necessary to evaluate the rheological behavior of cementitious materials with açaí fibers, which has not been reported in the literature. By doing so, it will be possible to optimize the processing conditions and develop new applications, such as additive manufacturing, which has never been explored with açaí fibers. KW - Natural fibers KW - Açaí fiber KW - Portland cement KW - Alternative materials PY - 2023 DO - https://doi.org/10.1016/j.jobe.2023.106481 SN - 2352-7102 VL - 71 IS - 106481 SP - 1 EP - 21 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-57326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Su, C. A1 - Shi, J. A1 - Durlo Tambara, Luís Urbano A1 - Yang, Y. A1 - Liu, B. A1 - Revilla-Cuesta, V. T1 - Improving the mechanical properties and durability of steam-cured concrete by incorporating recycled clay bricks aggregates from C&D waste N2 - The output of C&D waste is increasing year by year, among which low-quality recycled brick aggregates (RBAs) have not been well utilized and brought environmental burden. The durability of steam-cured concrete (HCC) is often compromised due to the detrimental effects of this curing regime on the long-term performance and microstructure development of the concrete material. To address this issue, this study investigates the potential of incorporating RBAs to improve the long-term durability of HCC. The results demonstrate that the incorporation of a small amount of RBA (10–20%) not only enhances the 28-d strength of HCC by 2.5–11.3%, but also improves its impermeability by mitigating heat damage effects. The combined application of fine and coarse RBA was found to effectively balance the negative effects of coarse RBA on the performance of HCC. Furthermore, the utilization of RBA in HCC was shown to have economic and environmental benefits. The results of this study demonstrate a simple and effective approach to improve the long-term durability of HCC while promoting the high-value utilization of solid waste. KW - Steam-cured concrete KW - C&D waste KW - Durability KW - Recycled aggregate KW - Environmental benefits PY - 2024 DO - https://doi.org/10.1016/j.powtec.2024.119571 VL - 438 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-59799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Durlo Tambara, Luís Urbano T1 - Early hydration reactions of calcium sulfoaluminate cement in water and alkaline media N2 - This study investigates the early hydration of calcium sulfoaluminate (CSA) cement in water (CSAH) and 2M NaOH (CSA2M), both with a liquid/solid ratio of 0.5. Hydration kinetics were assessed using in situ X-ray diffraction, isothermal conduction calorimetry, ultrasonic pulse velocity (UPV) and mechanical strength measurements. The results indicate that in the CSA2M system, the maximum heat release occurs earlier, and UPV measurements reveal a more rapid increase in mechanical stiffness (Figure 1a). The presence of alkalis accelerates the dissolution of ye’elimite and anhydrite, leading to a shorter induction period and faster precipitation of ettringite (Figure 1b-d). The phase refinement confirmed a higher dissolution rate of anhydrite in the alkaline environment, while the formation of ettringite stabilizes within 10 hours. Initial dissolution (0–40 min) increases ion concentration, followed by accelerated ettringite formation (0.6–2.5 h) with rising heat flow and UPV. A secondary acceleration (2.5–4.3 h) occurs only in CSAH. Deceleration (2.5–10 h) leads to further stabilization, with reactions proceeding at a slower rate. At 25 h, CSAH reached 58.3% ettringite and CSA2M 48.2%. These findings contribute to a deeper understanding of the early hydration mechanisms of CSA cement and the impact of alkalis on phase evolution. T2 - 3rd International Workshop on Calcium Sulfoaluminate Cements CY - Leeds, UK DA - 23.06.2025 KW - Calcium sulfoaluminate cement KW - Ultrasonic pulse velocity KW - Early hydration KW - Alkali KW - In situ XRD PY - 2025 AN - OPUS4-63758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Matos, P. R. de A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Rocha, J.C. A1 - Campos, C. E. M. de A1 - Gleize, P. J. P. T1 - Influence of Nanosilica and Superplasticizer Incorporation on the Hydration, Strength, and Microstructure of Calcium Sulfoaluminate Cement Pastes N2 - This study investigated the effect of incorporating three types of nanosilica (NS), two powders, and one colloidal suspension on the hydration, strength, and microstructure of calcium sulfoaluminate (CSA) cement pastes prepared with and without a superplasticizer (SP). X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and compressive strength tests were performed after 2, 5, and 28 days of hydration. The results showed that both NS powders delayed cement hydration at an early age, which was attributed to particle agglomeration (confirmed by dynamic light scattering). Whereas well-dispersed colloidal NS did not significantly affect the hydration of CSA at the investigated ages. SP incorporation improved the dispersion of CSA cement particles, resulting in a 10% increase in the degree of hydration of ye’elimite at 28 days for the system without NS. Conversely, when the SP was incorporated in NS-containing mixtures, it hindered cement hydration of the systems with powdered NS, but did not significantly affect the cement hydration of the system containing colloidal NS. The SEM images suggested that the SP changed the ettringite morphology, thereby negatively affecting the mechanical strength of the CSA pastes. KW - Calcium sulfoaluminate (CSA) cement KW - Nanosilica (NS) KW - Hydration KW - Microstructure PY - 2023 DO - https://doi.org/10.1061/JMCEE7.MTENG-15570 SN - 0899-1561 VL - 35 IS - 7 SP - 04023216 PB - ASCE AN - OPUS4-57404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Hirsch, A. A1 - Dehn, F. A1 - Gluth, Gregor T1 - Carbonation resistance of alkali-activated GGBFS/calcined clay concrete under natural and accelerated conditions N2 - The carbonation resistance of alkali-activated materials (AAMs) is a crucial parameter for their applicability in concrete construction, yet the parameters influencing it are insufficiently understood to date. In the present study, the carbonation resistance of alkali-activated concretes with varying fractions of ground granulated blast furnace slag (GGBFS) and calcined clay (i.e., high, intermediate, and low Ca contents) were assessed under natural and accelerated conditions. Corresponding hardened AAM pastes were studied using X-ray diffraction, thermogravimetry, Raman microscopy, and mercury intrusion porosimetry. The carbonation resistance of the concretes at natural CO2 concentration depended principally on their water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio. The remaining variability for similar ratios was caused by differences between the pore structures of the AAMs. For concrete with favorable water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio and pore structure, the carbonation resistance was comparable to that of Portland cement concrete. The relationship between carbonation coefficients obtained under accelerated and natural conditions differed for concretes with high and low fractions of calcined clay, indicating that accelerated carbonation testing is less suitable to study the carbonation of low-Ca AAMs. KW - Alkali-activated materials KW - Carbonation KW - Calcined clay PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610747 DO - https://doi.org/10.1016/j.conbuildmat.2024.138351 SN - 1879-0526 VL - 449 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-61074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Durlo Tambara, Luís Urbano A1 - Dehn, F. A1 - Gluth, Gregor T1 - Effect of alkali-activated concrete composition on carbonation rate under accelerated and natural conditions N2 - While alkali-activated binders offer certain advantages over traditional Portland cement binders, particu¬larly in terms of resistance against chemical attacks and potentially environmental footprint, their degradation mechanisms remain incompletely understood at present, specifically carbonation. Thus, this study investigates the impact of natural and accelerated carbonation (1% and 4% CO2) on three different compositions of alkali-activated concretes: 100% calcined clay (C100) binder, 100% ground blast furnace slag (S100) binder, and a 40% calcined clay and 60% blast furnace slag blend (C40S60). C100 concretes exhibit faster carbonation kinetics, with five times greater natural carbonation depths than S100. This difference diminishes under accelerated carbonation, showing a 1.5 times difference for 1% CO2 and complete carbonation for 4% CO2 at 90 days. The results thus confirm that accelerated carbonation testing of low-Ca alkali-activated concretes yields results that are not representative of natural carbonation. The C40S60 sample demonstrates a carbonation profile similar to a CEM I concrete, i.e., a high carbonation resistance. Microstructure analysis indicates the formation of three polymorphs of calcium carbonate for S100 (calcite, vaterite, and aragonite), with a higher CO2 concentration favouring aragonite over vaterite. C100 exhibits no calcium carbonates; instead, sodium carbonates form, including trona for 4% CO2 and natrite for both accelerated tests. C40S60 shows calcium and sodium carbonates, although to a lesser extent, containing predominantly calcite and minor signals of natrite. Suitable compositions, like C40S60, prove as effective during natural or accelerated carbonation tests as conventional Portland cement concrete. T2 - RILEM Spring Convention 2024 CY - Milan, Italy DA - 10.04.2024 KW - Alkali-activated concrete KW - Carbonation KW - Calcined clay KW - Slag KW - Durability PY - 2024 AN - OPUS4-59915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matos, P. R. de A1 - Andrade Neto, J. S. A1 - Durlo Tambara, Luís Urbano A1 - Rodríguez, E. D. A1 - Kirchheim, A. P. A1 - Campos, C. E. M. de T1 - Measuring the early-age volumetric change of cement paste through in-situ XRD N2 - Volumetric changes follow Portland cement hydration reactions: aluminates' hydration is generally expansive, whereas silicates' reaction leads to shrinkage. Determining the volumetric variation at very early ages (i.e., first minutes/hours) presents operational challenges; most standards prescribe the measurement on specimens that are already hardened, while measurements from the fresh state are not standardized. This article reports the first attempt to use in-situ X-ray diffraction (XRD) to measure the early-age volumetric variation of a cementitious paste. For this purpose, a C3A + gypsum paste was assessed for 36 h, measuring its vertical displacement over time through XRD. The results showed that the expansion increased in the first ∼13 h, in line with the ettringite formed up to ∼11 h. In addition, the volumetric expansion agreed well with the heat release in calorimetry. It is concluded that the volumetric variation measurement of cementitious pastes through in-situ XRD is a promising technique, but further studies are needed to make this technique consolidated. KW - X-ray diffraction KW - Shrinkage KW - Expansion KW - Hydration KW - Portland cement PY - 2023 DO - https://doi.org/10.1016/j.mtcomm.2023.106857 SN - 2352-4928 VL - 36 SP - 1 EP - 4 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-58107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silvestro, L. A1 - Ruviaro, A. S. A1 - Lima, G. A1 - Durlo Tambara, Luís Urbano A1 - Feys, D. A1 - Kirchheim, A. P. T1 - Rotational rheometry test of Portland cement-based materials - A systematic literature review N2 - This study systematically reviews 62 papers on the use of rotational rheometry to assess the fresh state behavior of Portland cement-based materials. The research highlights the wide variation in test methods and aims to provide a comprehensive overview. Findings reveal that 50.0% of studies employed vane geometry, despite its limitations in providing transformation equations. Regarding dynamic shearing tests, 67.0% followed a consensus using a pre-shearing step and a step-wise routine with stabilization times ≥ 10 s. While the Bingham model is commonly used, the study emphasizes the importance of considering shear-thinning behavior in cementitious materials. Models like Herschel-Bulkley and modified Bingham may be more appropriate. This review offers insights into testing conditions for rotational rheometry of cementitious materials, serving as a foundation for future research in the field. KW - Review KW - Rheology KW - Rheometry KW - Rotational KW - Cement PY - 2024 DO - https://doi.org/10.1016/j.conbuildmat.2024.136667 SN - 0950-0618 VL - 432 SP - 1 EP - 14 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-60075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Ruviaro, A. S. A1 - Gleize, P. J. P. A1 - de Azevedo, A. R. G. T1 - Influence of polycarboxylate superplasticizer and calcium sulfoaluminate cement on the rheology, hydration kinetics, and porosity of Portland cement pastes N2 - Binary systems composed of Portland cement (PC) and calcium sulfoaluminate (CSA) cement have stood out for applications requiring high early strengths. Nevertheless, the application of these systems may be limited due to their properties in the fresh state, which requires a better understanding of the rheological behavior of these materials. Thus, this study evaluated the incorporation of different polycarboxylate-based superplasticizer (SP) contents (0.15, 0.20, and 0.25 wt%) on PC and PC-CSA binary cement pastes. Rotational rheometry, isothermal calorimetry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption and desorption tests to assess the pore size distribution of cement pastes were conducted. While the SP incorporation reduced the dynamic yield stress of PC pastes, it progressively increased the yield stress of PC-CSA systems. The increase in SP content increased the main heat flow peak of PC-CSA pastes, although it did not significantly affect the cumulative heat after 160 h of hydration. FTIR and XRD confirm higher ettringite contents in the binary systems and indicate the presence of carboaluminates phases after 7 d of hydration in both PC and PC-CSA and hemicarboaluminate in PC-CSA pastes. The CSA incorporation reduced the cumulative pore volume by up to 32% compared to PC pastes, while the SP content evaluated did not significantly affect the porosity of PC-CSA pastes. KW - Calcium sulfoaluminate cement KW - Portland cement KW - Superplasticizer KW - Rheology KW - Hydration PY - 2023 DO - https://doi.org/10.1016/j.jobe.2023.106120 SN - 2352-7102 VL - 68 SP - 1 EP - 15 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-57034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Durlo Tambara, Luís Urbano T1 - Influence of dredging mud on the calcium sulfoaluminate cement hydration N2 - Dredging sediment refers to materials removed from the bottom of a water body during dredging operations. Mainly the dreading mud contains clay, silt, sand, water, and alkalis. This work incorporated dredging mud into the calcium sulfoaluminate cement at replacement levels of 0%, 10%, 30%, and 50% by weight. Pastes were evaluated after 1d, 28d, and 90d- hydration through mechanical strengths and the reaction rate by isothermal conduction calorimetry. XRD and MIP characterized the reaction products. The findings showed that small replacements (10% and 30%) increased early strength with higher ettringite formation in the system at 1d of curing. However, the evolution of mechanical strength was lower than the reference (0% replacement) over time. The results showed that in low replacement dosages, the dredging mud act as a nucleation site for the hydration of calcium sulfoaluminate phases. T2 - 7th International Conference Non-Traditional Cement & Concrete (NTCC) CY - Brno, Czech Republic DA - 25.06.2023 KW - Calcium sulfoaluminate cement KW - Dredging mud KW - Hydration KW - Paste PY - 2023 AN - OPUS4-58054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Durlo Tambara, Luís Urbano A1 - Cheriaf, M. A1 - Rocha, J. C. T1 - Autonomous Self-Healing Agents in Cementitious Materials: Parameters and Impacts on Mortar Properties N2 - The concept of self-healing materials and the development of encapsulated curing agents represent a cutting-edge approach to enhancing the longevity and reducing the maintenance costs of cementitious structures. This systematic literature review aims to shed light on the parameters involved in the autonomous self-healing of cementitious materials, utilizing various encapsulated healing agents such as pellets, granules, and capsules. This review also identifies and selects studies that offer additional insights into the efficacy of the self-healing process in cementitious materials and the influence of these specific encapsulated healing agents on the physical mechanical properties of mortars. This comprehensive approach provides a deep understanding of the interplay between self-healing and the physical–mechanical properties of mortars containing these encapsulated healing agents. The main findings indicate that the cement-to-sand ratio, characteristics of fine aggregates, and encapsulation methods significantly impact crack control, self-healing efficiency, and properties of mortar in both fresh and hardened states. The content of encapsulated healing agents within the cementitious matrix affects both the initial workability or flow and subsequent mechanical properties. While pellets coated with PVA film typically reduce workability in the fresh state and compressive strength, capsules coated with Portland cement and sodium silicate mitigate these effects and improve crack sealing in fresh and hardened states without compromising the self-healing capacity of cracks. The three-point flexural test has emerged as the preferred method for a pre-crack assessment over 28 days, with variations depending on the type of healing agent used. As noted in the literature, water has been identified as the optimal environment for autonomous healing. These findings underscore the potential of encapsulation techniques to enhance self-healing capabilities through the controlled release of agents within the cementitious matrix, thereby advancing the research on and development of intelligent construction materials and increasing the durability of cement-based structures. KW - Self-healing cementitious composite KW - Encapsulated curing agents KW - Pellets KW - Granules KW - Capsules KW - Physical–mechanical properties KW - Autonomous self-healing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611860 DO - https://doi.org/10.3390/buildings14072000 SN - 2075-5309 VL - 14 IS - 7 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-61186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Durlo Tambara, Luís Urbano A1 - Dehn, F. A1 - Gluth, Gregor ED - D’Erme, C. ED - Paglia, C. ED - Cordero, E. G. T1 - The importance of leaching for the carbonation resistance of alkali-activated slag and calcined clay concretes N2 - This study investigates the impact of leaching on the carbonation resistance of alkali-activated materials with varying calcium content. Six binder compositions were tested, combining ground blast furnace slag and calcined clay, with CaO content ranging from ~0% to ~40%. Samples underwent three conditions: no leaching, two weeks of leaching (2Le), and five leaching-carbonation cycles (5LCC). Carbonation tests were performed under natural conditions and 1% CO2 for reference and 2Le samples, while 5LCC samples were exposed solely to accelerated carbonation. Under natural carbonation, the typical relationship between carbonation resistance and the water/(CaO+MgOeq+Na2Oeq+K2Oeq) ratio was observed for both the reference and 2Le samples, with an increase in carbonation rate in compositions containing more than 40% calcined clay. In accelerated carbonation conditions, 2Le and 5LCC conditions showed slightly improved carbonation resistance compared to the reference samples, except for the mixtures containing only calcined clay (C100) and the mix with 40% calcined clay (C40S60). The poor performance of C100 was attributed to its low reactivity after 28 days, which resulted in significant sodium leaching and reduced activation of the calcined clay. Although C40S60 outperformed non-leached samples, its carbonation resistance slightly decreased in leached and accelerated carbonation samples due to reduced gel phase formation; however, this reduction was significantly less than that of C100. These findings suggest that while leaching can enhance carbonation resistance by reducing excess alkalis, low-reactivity systems, e.g. based solely on calcined clay, are more susceptible to degradation. KW - Carbonation KW - Alkali-activated materials KW - Leaching KW - Durability KW - Calcined clay PY - 2026 SN - 978-3-032-14170-5 DO - https://doi.org/10.1007/978-3-032-14170-5_16 SP - 148 EP - 157 PB - Springer CY - Cham AN - OPUS4-65355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -