TY - JOUR A1 - Lörchner, Dominique A1 - Tang, Ductri A1 - Mauch, Tatjana A1 - Jung, Christian A1 - Hofmann, Andrea A1 - Kroh, L.W. T1 - Development and validation of a liquid chromatography-mass spectrometry method for simultaneous analysis of triazine-based brominated flame retardants in environmental samples N2 - In the present study, a novel and reliable analytical method was developed and validated for the simultaneous determination of 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TDBP-TAZTO) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in environmental samples using high-performance liquid chromatography coupled to a tandem mass spectrometer. Firstly, for optimization of the liquid chromatography separation, mobile phases, oven temperatures, modifiers, and buffers were varied. Afterwards, the extraction efficiency of sediment and fish samples was tested with different techniques (pressurized liquid, solid-liquid, ultrasound-assisted, and Soxhlet extraction). Additionally, cleanup using modified multilayer silica gel (sediment) and gel permeation chromatography as well as Florisil® columns (fish) with several solvent mixtures were performed. The best results were obtained with the pressurized liquid extraction (optimal conditions: extraction solvent 100% toluene, extraction time 20 min, cycles two, extraction temperature 100 °C, and flushing volume 60%) compared to other solvent extraction methods. On the basis of this optimized analytical procedure, the method was validated with satisfactory values of correlation coefficient (R2) between 0.998 and 0.999 for both matrices in the calibration range of 2.0–502.0 μg kg−1 for TDBP-TAZTO and 16.6–770.6 μg kg−1 for TTBP-TAZ in sediment samples as well as 4.8–303.5 μg kg−1 and 47.4–742.5 μg kg−1 in fish samples (bream), respectively.Mean recoveries (n=5) were calculated for both analytes with spiked matrices at one concentration level (100 μg kg−1) between 98 and 114% with intra-day relative standard deviations less than 11%. The inter-day precision (n = 15) was also acceptable for both compounds < 11%. It was found that the limit of detection and limit of quantification were in the range of 0.4–1.3 μg kg−1 for TDBP-TAZTO and 10–28 μg kg−1 for TTBP-TAZ in surface sediment samples and 7–25 μg kg−1 and 22–80 μg kg−1 in fish samples (bream), respectively. The results indicated that these analytical methods could provide reliable and efficient approaches for quantification of TDBP-TAZTO and TTBPTAZ in sediment and fish samples. KW - Brominated flame retardants KW - Pressurized liquid extraction KW - TDBP-TAZTO KW - TTBP-TAZ KW - Sediment and fish samples PY - 2020 U6 - https://doi.org/10.1007/s00216-020-03057-x VL - 413 IS - 4 SP - 987 EP - 998 PB - Springer AN - OPUS4-51685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Kroh, L.W. A1 - Köppen, Robert T1 - First insights into electrochemical transformations of two triazine-based brominated flame retardants in model systems N2 - In this work, a study of electrochemical conversion was performed to elucidate different degradation pathways of the heterocyclic brominated flame retardants 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) and 2,4,6-Tris-(2,4,6-tribromo-phenoxy)-1,3,5-triazine (TTBP-TAZ). EC/MS was used to simulate the (bio)-transformation processes and to identify possible transformation products (TPs) which have never been reported before. For TDBP-TAZTO, six new TPs were observed after the electrochemical oxidation (applied potential of 0 to 1,800 mV vs. Pd/H2). In case of TTBP-TAZ, seven debromination products were generated with an applied potential of 0 to 2,200 mV vs. Pd/H2. The main degradation pathways confirmed by high resolution mass spectrometry for both compounds were hydroxylation, debromination as well as dehydrobromination. KW - Emerging/novel brominated flame retardant KW - Transformation products KW - Electrochemistry mass spectrometry PY - 2018 U6 - https://doi.org/10.1039/c8ay01968a SN - 1759-9660 SN - 1759-9679 VL - 10 IS - 43 SP - 5164 EP - 5170 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-46488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Kraus, Werner A1 - Köppen, Robert T1 - Photodegradation of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine in solvent system: Kinetics, photolysis products and pathway. N2 - In this study the direct and indirect photolysis of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in an organic solvent mixture (60:30:10, ACN:MeOH:THF) under UV-(C) and simulated sunlight irradiation was investigated, and the formed photo-transformation products were identified for the first time. TTBP-TAZ was almost completely degraded within 10 min under UV-(C) irradiation. Due to the fast degradation no specific kinetic order could be observed. In comparison, the reaction under simulated sunlight irradiation was much slower and thus, the kinetic first-order could be determined. The observed photolysis rate constant k as well as the half-life time t1/2 were estimated to be k = (0.0163 ± 0.0002) h-1 and t1/2 = 42.3 h, respectively. The addition of 2-propanol and hydrogen peroxide to investigate the influence of indirect photolysis under UV-(C) irradiation causes no influence on the degradation of TTBP-TAZ. Nevertheless, the removal of TTBP-TAZ under UV-(C) and simulated sunlight without additional chemicals (except solvent) indicates that the direct photolysis plays a significant role in the degradation mechanism of TTBP-TAZ. In both irradiation experiments, TTBP-TAZ was quantitatively degraded that involve the formation of previously unknown PTPs. Overall, two main PTPs were determined when irradiated with UV-(C) and eight sequential debromination products were observed when irradiated by simulated sunlight. These were determined by HPLC-DAD and - MS/(MS), respectively. Based on the chosen experimental conditions the consecutive debromination as well as photo-Fries rearrangement was confirmed as the main degradation pathway by high resolution mass spectrometry and X-ray diffraction. KW - XRD KW - Direct/indirect photolysis KW - HRMS KW - Photo-transformation products KW - TTBP-TAZ PY - 2019 U6 - https://doi.org/10.1016/j.chemosphere.2019.04.184 SN - 0045-6535 SN - 1879-1298 VL - 229 SP - 77 EP - 85 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lörchner, Dominique A1 - Koch, Matthias A1 - Kroh, L. W. A1 - Köppen, Robert T1 - Photodegradation of the „novel“ brominated flame retardant tris-(2,4,6-tribromophenoxy)-s-triazine N2 - Brominated flame retardants (BFRs) comprise a class of structurally diverse compounds that are functionally related and used in materials to reduce the flammability of polymers. Due to their global distribution, potential persistence, bioaccumulation and toxicity most of the BFRs of the first Generation are banned or restricted, and replaced by new ones. However, based on similar properties these new compounds may also pose a serious risk by causing adverse effects to human health and the environment. These alternative BFRs were grouped into two classes: „novel” and „emerging” BFRs. Emerging BFRs are defined as compounds that have been identified in any environmental compartments whereas novel BFRs are only detected in materials and/or goods above 0.1 wt.-%. The environmental fate of these alternative BFRs is partially unknown. Over the past years a multitude of studies on the photodegradation of BFRs in environmental matrices have been conducted to assess the photochemical behavior and fate in the environment. The photolytic debromination reaction is particularly induced among BFRs by UV exposure. The novel brominated triazine-based flame retardant tris-(2,4,6-tribromophenoxy)-s-triazine (TTBPTAZ) (Table 1) is a BFR that is mainly used in acrylonitrile butadiene styrene and high impact polystyrene. Ballesteros-Gómez et al. detected TTBP-TAZ in 8 of 13 plastic parts of consumer products and in 9 of 17 indoor dust samples but the photochemical behavior and fate is not known until now. The results of the present study, focused on photodegradation processes were performed for the first time for TTBP-TAZ to identify the photolysis intermediates and products to assess the environmental fate. T2 - DIOXIN CY - Florence, Italy DA - 29.08.2016 KW - Brominated flame retardants KW - TTBP-TAZ KW - Photodegradation PY - 2016 VL - 78 SP - 699 EP - 702 CY - Bayreuth AN - OPUS4-39037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Kroh, L. W. A1 - Köppen, Robert T1 - Investigation of two triazine-based heterocyclic brominated flame retardants by coupled thermogravimetry-Fourier transform infrared spectroscopy N2 - In this study, the thermal decomposition of 1,3,5-tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBPTAZTO) and 2,4,6-tris-(2,4,6-tribromo-phenoxy)-1,3,5-triazine (TTBP-TAZ) were investigated for the first time by thermogravimetric analysis. Both compounds were thermal degraded between 225 and 350 °C (TDBP-TAZTO) as well as 300 and 400 °C (TTBP-TAZ). As a result, mass loss (%) of 98.5% for TTBP-TAZ and 95.4% for TDBP-TAZTO at 600 °C under N2 were observed. The major pyrolytic degradation products of TTBP-TAZ were formed in a single step and identified by FTIR analysis as 2,4,6-tribromophenol and further bromine-substituted aromatic compounds. In comparison, TDBP-TAZTO was pyrolytic degraded in two steps, whereby on the first step the release of hydrogen Bromide and 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione could be detected. In the second minor step, isocyanic acid could be additionally identified. Subsequently, the obtained products of the TGA-FTIR measurements were used for a targeted search for mass fragments in mass spectrometry measurements. For TTBP-TAZ, only the degradation product 1,3,5-tribromobenzene could be detected by MS/MS analyzes. No comparable thermal degradation products, except hydrogen bromide, were observed in the MS/MS spectra of TDBP-TAZTO. Therefore, the search of further mass fragments was not possible compared to the findings of the TGA-FTIR measurements. KW - Pyrolysis KW - Thermal decomposition KW - TGA-FTIR KW - Mass spectrometry PY - 2019 U6 - https://doi.org/10.1016/j.jaap.2019.104635 VL - 141 SP - 104635-1 EP - 104635-5 PB - Elsevier B.V. AN - OPUS4-48506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lörchner, Dominique A1 - Koch, Matthias A1 - Kroh, L. W. A1 - Köppen, Robert T1 - Simulation metabolischer Oxidationsreaktionen ausgewählter PBFSM mittels EC/MS N2 - Brominated flame retardants (BFRs) comprise a class of structurally diverse compounds that are functionally related and used in materials to reduce the flammability of polymers. From the early 1960s to present day, BFRs have been produced in high volumes and are widely used in plastics, foams and textiles. Due to concerns over their persistence, bioaccumulation and toxicity most of the BFRs of the first generation are banned or restricted, and replaced by new ones. However, based on similar properties these new compounds may also pose a serious risk by causing adverse effects to human health and the environment. These alternative BFRs were grouped into two classes: „novel‟ and „emerging‟ BFRs. Emerging BFRs are defined as compounds that have been identified in any environmental compartments whereas novel BFRs are only detected in materials and/or goods above 0,1 wt.-% (EFSA, 2012). Because of the lack of knowledge about occurrence, physico-chemical properties and environmental behavior, two representatives were selected to investigate their degradation and transformation capability. In order to get a first understanding about the environmental fate and the metabolism of the selected compounds in-vitro studies based on microsomal approaches (Human/Rat liver microsomes) were performed. Additionally, oxidative/ reductive degradation processes were simulated by coupling of an electrochemical cell with mass spectrometric detection to generate and detect the oxidative products. The aim of the presented work is to compare these different kinds of metabolic studies to obtain data concerning the biodegradation and/or biotransformation pathways of these new contaminants. In order to get a first understanding about the environmental fate and the metabolism of the selected compounds in-vitro studies based on microsomal approaches (Human/Rat liver microsomes) were performed. Additionally, oxidative/ reductive degradation processes were simulated by coupling of an electrochemical cell with mass spectrometric detection to generate and detect the oxidative products. The aim of the presented work is to compare these different kinds of metabolic studies to obtain data concerning the biodegradation and/or biotransformation pathways of these new contaminants.zeige mehrzeige weniger N2 - Polybromierte Flammschutzmittel (PBFSM) werden seit den 1960er Jahren zur Herabsetzung der Entflammbarkeit von Polymeren verwendet. Diese stehen auf Grund ihrer potentiell persistenten, bioakkumulierenden sowie toxischen Eigenschaften bis heute im Fokus der Wissenschaft und Gesetzgebung. In den letzten Jahren kam es verstärkt zum Einsatz neuer („emerging“) sowie neuartiger („novel“) PBFSM. Diese Verbindungen wurden bereits in der Umwelt bzw. oberhalb von 0,1 Gew.-% in Bedarfsgegenständen nachgewiesen. Zwei Vertreter, über deren Vorkommen, physikochemischen Eigenschaften und Umwelt-verhalten nur wenig bekannt ist, wurden daher ausgewählt, um das Abbau- und Transformationsverhalten näher zu untersuchen. Um eine Einschätzung über das Umweltverhalten bzw. die Metabolisierung dieser Verbindungen vornehmen zu können, werden sowohl Untersuchungen der cyto-chromabhängigen Biotransformation (Phase I/II) anhand mikrosomaler Ansätze als auch die Simulation oxidativer/reduktiver Abbauprozesse durch die Kopplung aus elektrochemischer Zelle (EC) und massenspektrometrischer Detektion (MS) herangezogen. Ziel der präsentierten Arbeit ist es, ein erstes Verständnis des Umweltverhaltens dieser neuartigen Kontaminanten zu entwickeln, um so eine Bewertung über die toxikologische Relevanz dieser Verbindungen bzw. deren Umwelt-/Bio-Transformationsprodukte geben zu können. T2 - LC-MS in der Umweltanalytik CY - Leipzig, Germany DA - 06.06.2016 KW - Umweltverhalten KW - Polybromierte Flammschutzmittel KW - EC/MS PY - 2016 AN - OPUS4-36452 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lörchner, Dominique A1 - Kroh, L. W. A1 - Koch, Matthias A1 - Köppen, Robert T1 - Untersuchung von PBFSM - Abbau und Transformationsprodukte in Umweltkompartimenten T2 - 44. Deutscher Lebensmittelchemikertag CY - Karlsruhe DA - 2015-09-14 PY - 2015 AN - OPUS4-34217 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lörchner, Dominique A1 - Koch, Matthias A1 - Kroh, L. W. A1 - Köppen, Robert T1 - Photodegradation of an “emerging” heterocyclic brominated flame retardant N2 - The occurrence and fate of brominated flame retardants (BFRs) in the environment are topics of increasing concern. In recent years, numerous studies about their global transport, UV degradation, bioaccumulation and toxicity were performed to assess their environmental fate. Thus, most of the first generation BFRs are banned or restricted, and replaced by new ones. However, based on similar properties these new compounds may also pose a serious risk by causing adverse effects to human health and the environment. According to the European Food Safety Authority (EFSA) the class of the “emerging” BFRs are defined as compounds that have been identified in any environmental compartments, but the potential for degradation or bioaccumulation of these emerging BFRs is partially unknown. A representative of this class of compounds is the heterocyclic hexabrominated TDBP-TAZTO which was first detected in mollusks from Chinese bohai sea and in environmental matrices near a manufacturing plant in southern china. Furthermore, Wang et al. describe that the growth of the alga Nannochloropsis sp. is inhibited by TDBP-TAZTO in a concentration dependent manner but the photo-chemical behavior as well as the formation of possible photo-transformation products (PTPs) are still unknown. In order to clarify this complex issue photo-degradation experiments were by determining the rate constants and degradation half-life times of TDBP-TAZTO in different solvent compositions. In this study, the photodegradation of TDBP-TAZTO was performed for the first time to identify its photolysis products and to get a first understanding about the main degradation pathway in environmental matrices. T2 - Tag der Chemie CY - Berlin, Germany DA - 05.07.2017 KW - TDBP-TAZTO KW - Phototransformation products KW - UV-C PY - 2017 AN - OPUS4-42984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lörchner, Dominique A1 - Koch, Matthias A1 - Kroh, Lothar W. A1 - Köppen, Robert T1 - Phototransformation of the “emerging” BFR 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione N2 - The occurrence and fate of brominated flame retardants (BFRs) in the environment are topics of increasing concern. In recent years, numerous studies about their global transport, UV degradation, bioaccumulation and toxicity were performed to assess their environmental fate. As a result, most of the first generation BFRs are banned or restricted, and replaced by new ones. However, based on similar properties these new compounds may also pose a serious risk by causing adverse effects to human health and the environment. According to the European Food Safety Authority (EFSA) the class of the “emerging” BFRs are defined as compounds that have been identified in any environmental compartments, but the potential for degradation or bioaccumulation of these emerging BFRs is partially unknown. A representative of this class of compounds is the heterocyclic TDBP-TAZTO which was first detected in mollusks from Chinese bohai sea and in environmental matrices near a manufacturing plant in southern china. Furthermore, Wang et al. describe that the growth of the alga Nannochloropsis sp. is inhibited by TDBP-TAZTO in a concentration dependent manner but the photo-chemical behavior as well as the formation of possible photo-transformation products (PTPs) are still unknown. In order to clarify this complex issue photo-degradation experiments were by determining the rate constants and degradation half-life times of TDBP-TAZTO in different solvent compositions. In this study, the photodegradation of TDBP-TAZTO was performed for the first time to identify its photolysis products and to get a first understanding about the main degradation pathway in environmental matrices. T2 - BFR 2017 CY - York, UK DA - 08.05.2017 KW - Phototransformation products KW - Photodegradation KW - TDBP-TAZTO PY - 2017 AN - OPUS4-40351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lörchner, Dominique A1 - Koch, Matthias A1 - Kroh, Lothar W. A1 - Köppen, Robert T1 - Photodegradation of the „novel“ brominated flame retardant Tris-(2,4,6-tribromophenoxy)-s-triazine N2 - Brominated flame retardants (BFRs) comprise a class of structurally diverse compounds that are functionally related and used in materials to reduce the flammability of polymers. Due to their global distribution, potential persistence, bioaccumulation and toxicity most of the BFRs of the first generation are banned or restricted, and replaced by new ones. However, based on similar properties these new compounds may also pose a serious risk by causing adverse effects to human health and the environment. These alternative BFRs were grouped into two classes: „novel” and „emerging” BFRs. Emerging BFRs are defined as compounds that have been identified in any environmental compartments whereas novel BFRs are only detected in materials and/or goods above 0.1 wt.-%. The environmental fate of these alternative BFRs is partially unknown. Over the past years a multitude of studies on the photodegradation of BFRs in environmental matrices have been conducted to assess the photochemical behavior and fate in the environment. The photolytic debromination reaction is particularly induced among BFRs by UV exposure. The novel brominated triazine-based flame retardant tris-(2,4,6-tribromophenoxy)-s-triazine (TTBP-TAZ) is a BFR that is mainly used in acrylonitrile butadiene styrene and high impact polystyrene. Ballesteros-Gómez et al. detected TTBP-TAZ in 8 of 13 plastic parts of consumer products and in 9 of 17 indoor dust samples but the photochemical behavior and fate is not known until now. The results of the present study, focused on photodegradation processes were performed for the first time for TTBP-TAZ to identify the photolysis intermediates and products to assess the environmental fate. T2 - DIOXIN 2016 CY - Florence, Italy DA - 28.08.2016 KW - TTBP-TAZ KW - UV irradiation KW - Phototransforamtion products PY - 2016 AN - OPUS4-40356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -