TY - CONF A1 - Lörchner, Dominique A1 - Koch, Matthias A1 - Kroh, L. W. A1 - Köppen, Robert T1 - Photodegradation of the „novel“ brominated flame retardant tris-(2,4,6-tribromophenoxy)-s-triazine N2 - Brominated flame retardants (BFRs) comprise a class of structurally diverse compounds that are functionally related and used in materials to reduce the flammability of polymers. Due to their global distribution, potential persistence, bioaccumulation and toxicity most of the BFRs of the first Generation are banned or restricted, and replaced by new ones. However, based on similar properties these new compounds may also pose a serious risk by causing adverse effects to human health and the environment. These alternative BFRs were grouped into two classes: „novel” and „emerging” BFRs. Emerging BFRs are defined as compounds that have been identified in any environmental compartments whereas novel BFRs are only detected in materials and/or goods above 0.1 wt.-%. The environmental fate of these alternative BFRs is partially unknown. Over the past years a multitude of studies on the photodegradation of BFRs in environmental matrices have been conducted to assess the photochemical behavior and fate in the environment. The photolytic debromination reaction is particularly induced among BFRs by UV exposure. The novel brominated triazine-based flame retardant tris-(2,4,6-tribromophenoxy)-s-triazine (TTBPTAZ) (Table 1) is a BFR that is mainly used in acrylonitrile butadiene styrene and high impact polystyrene. Ballesteros-Gómez et al. detected TTBP-TAZ in 8 of 13 plastic parts of consumer products and in 9 of 17 indoor dust samples but the photochemical behavior and fate is not known until now. The results of the present study, focused on photodegradation processes were performed for the first time for TTBP-TAZ to identify the photolysis intermediates and products to assess the environmental fate. T2 - DIOXIN CY - Florence, Italy DA - 29.08.2016 KW - Brominated flame retardants KW - TTBP-TAZ KW - Photodegradation PY - 2016 VL - 78 SP - 699 EP - 702 CY - Bayreuth AN - OPUS4-39037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Mekonnen, Tessema F. A1 - Koch, Matthias T1 - Transformation products of organic contaminants and residues - Overview of current simulation methods N2 - The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton's reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods. KW - Transformation product KW - Electrochemistry KW - Photochemistry KW - Fenton’s reagent PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-474108 SN - 1420-3049 VL - 24 IS - 4 SP - 753, 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-47410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -