TY - JOUR A1 - Österle, Werner A1 - Deutsch, Cornelius A1 - Gradt, Thomas A1 - Orts Gil, Guillermo A1 - Schneider, Thomas A1 - Dmitriev, A.I. T1 - Tribological screening tests for the selection of raw materials for automotive brake pad formulations N2 - A modified pin-on-disc test was applied to determine tribological properties of typical brake pad constituents. Ball-milling of these ingredients together with iron oxide and graphite provided model materials displaying the main features of real third bodies. Solid lubricants like graphite affected the friction and wear behaviour of Fe3O4 powders considerably whereas further addition of hard nanoparticles induced only minor effects. This was corroborated by comparison with modelling results. MoS2 played a dual role. Depending on special conditions, this ingredient either reduced or increased friction. The latter could be explained, after nanoscopic characterization, by oxidation and destruction of the wear-protecting tribofilm. KW - Brake pad formulation KW - Raw materials KW - Third body KW - Pin-on-disc test PY - 2014 U6 - https://doi.org/10.1016/j.triboint.2014.01.017 SN - 0301-679X VL - 73 SP - 148 EP - 155 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-30221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Hammouri, Basem A1 - Morales Guzman, Pablo Israel A1 - Wetzel, B. A1 - Yigit, D. A1 - Zhang, G. T1 - Exploring the beneficial role of tribofilms formed from an epoxy-based hybrid nanocomposite N2 - The composition and nanostructure of a beneficial tribofilm formed during sliding of a hybrid nanocomposite against steel were characterized comprehensively. A similar nanostructure was produced by high energy ball milling of the three identified tribofilm constituents: silica, hematite and graphite. By supplying powders to a pin-on-disc test it has been shown that neither silica, nor hematite, nor a mixture of both provide the low coefficient of friction (COF) observed for the hybrid composite. Only if graphite was blended with the oxides, the low COF was obtained. Thus, a film of finely dispersed stable inorganic wear products containing 15 vol% graphite provides low friction and wear in the considered case. KW - TEM KW - Nanocomposite KW - Tribofilm KW - Ball milling KW - Pin-on-disc test PY - 2015 U6 - https://doi.org/10.1016/j.triboint.2015.03.006 SN - 0301-679X VL - 88 SP - 126 EP - 134 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -