TY - CONF A1 - Bäßler, Ralph A1 - Keserovic, Amela A1 - Sobetzki, Joana A1 - Sarmiento Klapper, Helmuth A1 - Dimper, Matthias T1 - Laboratory evaluation of metallic materials for geothermal applications N2 - In the last years, geothermal power has become a reliable and significant energy source. Because service conditions in geothermal facilities from deeply located aquifers are usually critical in terms of corrosion, materials selection is a very important issue. Preliminary evaluation of the material's suitability represents therefore a valuable strategy to ensure a secure and reliable operation of the facilities. In geothermal applications, the use of high-alloyed materials such as superaustenitic stainless steels, duplex stainless steels, and nickel-based alloys has been considered as a good alternative because of their remarkable corrosion resistance and appropriate mechanical properties. Nevertheless, the corrosion behavior of those metallic materials in geothermal fluids at service conditions has not been determined in many cases. In this work, laboratory tests including electrochemical investigations and exposure tests at 100 degrees C and 150 degrees C (1,500 kPa) showed the limits of suitability concerning localized corrosion of three different, corrosion-resistant alloys in the highly saline fluid of the North German Basin. T2 - EPRI International Conference on Corrosion in Power Plants CY - San Diego, CA, USA DA - 12.10.2015 KW - Geothermal KW - Corrosion KW - Crevice corrosion KW - Suitability PY - 2015 DO - https://doi.org/10.5006/1.3676631 SP - paper 6 AN - OPUS4-34754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Sarmiento Klapper, Helmuth A1 - Dimper, Matthias A1 - Keserović, Amela A1 - Sobetzki, Joana A1 - Zimmer, Sebastian T1 - Corrosion behavior of duplex stainless steel S31803 in artificial geothermal waters N2 - Since geothermal wells are a feasible energy source to replace fossil fuel supply, many technologies have been developed to take advantage of geothermal energy. Nevertheless, service conditions in geothermal facilities are due to the chemical composition of hydrothermal fluids and temperatures, in many cases, extreme in terms of corrosion. Therefore, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of the facilities. This contribution deals with the evaluation of the corrosion behavior of duplex steel S31803 (318LN, X2CrNiMoN22-5-3, 1.4462) conducted by electrochemical measurements and exposure tests in artificial geothermal waters simulating the conditions in different locations with geothermal potential in Germany. The duplex steel S31803 shows limited suitability for applications in artificial geothermal waters due to its susceptibility to pitting and crevice corrosion. For low saline geothermal waters it can be considered suitable at moderate temperatures. Slight crevice corrosion susceptibility needs to be considered. Results are being incorporated into a materials catalogue for geothermal applications which shall provide basic information for designers and users of geothermal facilities. T2 - NACE International Corrosion Conference 2016 CY - Vancouver, BC, Canada DA - 6.3.2016 KW - S31803 KW - Crevice corrosion KW - Duplex steel KW - Geothermal energy PY - 2016 SP - 7361-1 EP - 7361-8 PB - NACE International CY - Houston TX, USA AN - OPUS4-36986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -