TY - GEN A1 - Wolff, Dietmar A1 - von der Ehe, Kerstin A1 - Jaunich, Matthias A1 - Böhning, Martin A1 - Goering, Harald ED - Yamamoto, T. T1 - (U)HMWPE as neutron radiation shielding materials: impact of gamma radiation on structure and properties T2 - Effects of radiation on nuclear materials N2 - Due to their extreme high hydrogen contents, high molecular weight (HMW-) and ultra-high molecular weight (UHMW-) polyethylene (PE) are a comprehensible choice as neutron radiation shielding material in casks for storage and transport of radioactive materials. But as a direct consequence of inserting radioactive material in such casks, gamma radiation occurs. Hence, the impact of gamma radiation on the molecular structure of polyethylene has to be taken into consideration. Consequently, PE has to withstand any type of gamma radiation induced degradation affecting safety relevant aspects in order to be applicable for long term neutron radiation shielding purposes during the whole storage period (in Germany, for instance, up to 40 years). The scope of our investigation comprises an estimation of the impact of gamma radiation and temperature on the molecular and supra molecular structure of the two types of PE used as neutron radiation shielding cask components. A further point which is worth exploring is to what extent these changes are detectable by conventional analysis methods. Therefore, thermoanalytical measurements were performed such as differential scanning calorimetry (DSC), thermo mechanical analysis (TMA), dynamic mechanical analysis (DMA), and thermo gravimetric analysis (TGA). Additionally optical and weighing methods were applied. With those methods it is possible to detect structural changes in polyethylene induced by exposure to gamma radiation. The observed amounts of changes of the irradiated material are not safety relevant for the application of polyethylene as neutron radiation shielding material; moreover, some properties actually improve via irradiation. KW - HMW-PE KW - UHMW-PE KW - Gamma irradiation KW - Neutron radiation shielding material PY - 2013 SN - 978-0-8031-7533-4 DO - https://doi.org/10.1520/STP103980 N1 - Serientitel: STP – Series title: STP VL - 25 IS - STP 1547 SP - 211 EP - 227 AN - OPUS4-27931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - A new method to evaluate the low temperature function of rubber sealing materials JF - Polymer testing N2 - A new method for the evaluation of the low temperature properties of rubber materials is presented. The method emulates the standardized compression set measurement, which is frequently used for sealing materials, but can be performed within a considerably shorter time. The results are compared with the standard test and found to be qualitatively the same. Slight differences are discussed on the basis of the differences in the measurement procedures. Further data evaluation is done by fitting functions to describe the material behaviour. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2010 DO - https://doi.org/10.1016/j.polymertesting.2010.07.006 SN - 0142-9418 VL - 29 IS - 7 SP - 815 EP - 823 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-21914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness T2 - Proceedings of the ASME 2021 Pressure Vessels & Piping Conference (PVP2021) N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Völzke, Holger A1 - Herold, Christian A1 - Wolff, Dietmar A1 - Orellana Pérez, Teresa A1 - Bollingerfehr, W. A1 - Prignitz, S. A1 - Wunderlich, A. T1 - Abschlussbericht zum FuE-Verbundvorhaben KoBrA: Anforderungen und Konzepte für Behälter zur Endlagerung von Wärme entwickelnden radioaktiven Abfällen und ausgedienten Brennelementen in Steinsalz, Tonstein und Kristallingestein N2 - Im Forschungsvorhaben KoBrA werden Anforderungen an Endlagerbehälter für hochradioaktive Abfälle erstmals systematisch und unter Berücksichtigung des internationalen Standes von Wissenschaft und Technik hergeleitet. Parallel werden die behälterrelevanten Randbedingungen und Beanspruchungsgrößen für Endlagerbehälter in den drei potenziellen Wirtsgesteinen Steinsalz, Tonstein und Kristallingestein ermittelt. Darauf aufbauend werden die zur Erfüllung der Anforderungen unter den gegebenen Einwirkungen und Beanspruchungen notwendigen Behälterfunktionen bestimmt und erste Konzeptideen für zukünftige Endlagerbehälter diskutiert bzw. entwickelt. KW - Endlager KW - Behälter KW - Anforderungen KW - Hochradioaktive Abfälle KW - Wirtsgestein PY - 2020 DO - https://doi.org/10.2314/KXP:1750909669 N1 - Auftraggeber: Bundesministerium für Wirtschaft und Energie (BMWi), Förderkennzeichen: 02E11527 und 02E11537. SP - 1 EP - 110 PB - BGE Technology CY - Peine AN - OPUS4-52289 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Probst, Ulrich T1 - Advanced investigations to evaluate spent fuel cask safety for extended storage periods T2 - 50th Annual Meeting of the Institute of Nuclear Materials Management INMM (Proceedings) T2 - 50th Annual Meeting of the Institute of Nuclear Materials Management (INMM) CY - Tucson, Arizona, USA DA - 2009-07-12 KW - Behälter KW - Beständigkeit KW - Sicherheit KW - Dichtungen KW - Polymere KW - Lagerung KW - Radioaktive Stoffe PY - 2009 SP - 1 EP - 10 AN - OPUS4-20707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing and lifetime prediction of O-ring seals made of HNBR, EPDM and FKM T2 - 12. Kautschuk Herbst Kolloquium N2 - BAM is the federal institute for materials research and testing in Germany. One of our tasks is to evaluate the safety of casks designed for transport and/or storage of radioactive waste. As elastomeric seals are used in the containers as safety-relevant parts, it is our goal to be able to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. For this reason, an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) was started. Ageing was performed at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to 2 years. For assessing properties related to the sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates. For comparison, uncompressed O-rings were aged as well. The aged materials were characterized with conventional polymer analysis methods such as hardness and tensile tests, but also with more seal-specific methods such as compression stress relaxation (CSR, reflecting the loss of sealing force of a compressed seal over time), and compression set (CS, representing the recovery behaviour of a seal after release from compression). CS is chosen as the property for lifetime prediction as it is both sensitive to degradation and related to the seal performance. CS data is extrapolated to 60 °C, which yields lifetimes of approximately 5 years for HNBR and 64 years for EPDM for a criterion of 85 % CS respectively, and approx. 40 years for FKM for a criterion of 65 % CS (the highest value measured so far). T2 - 12. Kautschuk Herbst Kolloquium CY - Hanover, Germany DA - 22.11.2016 KW - Rubber KW - Compression set KW - Extrapolation KW - Degradation PY - 2016 SN - 9783981407648 VL - 2016 AN - OPUS4-38483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erhard, Anton A1 - Völzke, Holger A1 - Probst, Ulrich A1 - Wolff, Dietmar T1 - Ageing management for long term interim storage casks T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials (Proceedings) T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Ageing management KW - Lifetime KW - Material degradation PY - 2010 SP - 1 EP - 17 (Tuesday/T20/61) AN - OPUS4-23907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolff, Dietmar T1 - Ageing management issues for extended SF and HLW dry storage in Germany – Challenges, approach, examples N2 - In this presentation, the history and actual situation of the German nuclear waste management policy of spent fuel (SF) and high-level waste (HLW) is reported. Beside the description of the restructuration of responsible authorities and organizations in Germany, the principle of dry interim storage of SF and HLW in dual purpose casks is explained. The need for extended interim storage towards disposal implicates additional challenges for the nuclear waste management strategy in Germany. (Extended)interim storage, subsequent transportation, and final disposal are closely linked. Integrated approaches concerning waste package designs and operations are supposed to be beneficial for the establishment of efficient long-term SF and HLW management strategies. Knowledge management and staff recruiting, education and training during phase out and beyond nuclear power plant operation are major issues. T2 - IAEA - Second Coordinate Research Meeting and Consultancy Meeting on Ageing Management Programmes for Spent Fuel Dry Storage Systems CY - Lemont, IL, USA DA - 29.04.2019 KW - Ageing Management KW - Extended Storage KW - Spent Nuclear Fuel PY - 2019 AN - OPUS4-48514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of elastomeric seals for storage containers T2 - Annual Meeting on Nuclear Technology 2015 N2 - At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to audit the safety of casks designed for transport and/or storage of radioactive material. With regard to the requirements on long-term safety of the containers, it is necessary to evaluate the service lifetime of the elastomeric seals used in the containers. With ageing, the elastomers will gradually lose their elasticity and their ability for recovery, which might result in a leakage above the allowed level or in a release of radioactivity during an incident. It is important to know the rate of degradation and which property can be used as an practical and easily measurable end-of-lifetime criterion. For this reason, we devised ageing experiments on different kinds of elastomers, namely FKM, EPDM and HNBR. The former two are actually used in containers for radioactive wastes – either as auxiliary seal in casks containing high activity waste, or as main seal in casks for medium or low activity waste. The latter is an often used seal material that is tested for comparative reasons. In our ageing program, these three materials are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using a suitable model. They are examined at logarithmic time intervals of several days up to 5 years. The samples are aged in their undeformed O-ring state as well as compressed between flanges with a deformation corresponding to the actual compression during service. Thus we can compare the ageing between relaxed and stressed sample. Additionally, we are ageing samples in flanges that allow leakage rate measurements. Other measurements include monitoring of the recovery force of the seal and the compression set. Furthermore, the samples are examined by thermal and dynamic-mechanical analysis for detecting changes in the glass transition temperature due to crosslinking or chain scission in the material. Besides, hardness is measured as a practical macroscopic indicator. Until now, we have analyzed samples aged up to 100 days. At the highest ageing temperature of 150 °C, the compressed EPDM has already reached a compression set of 95 %, while HNBR and FKM have reached 80 % and 30 %, respectively. Furthermore, HNBR has reached a Shore D hardness of 85, which is an immense increase after the initial value of 80 Shore A. However, when looking at the cross-section of the sample, it was obvious that only a layer of about 1 mm thickness has become so hard, while the inner part remained rubbery. This shows that there has been intense crosslinking mostly near the surface of the HNBR which forms a kind of oxygen diffusion barrier, inhibiting the thermooxidation of the inner part of sample which can retain elastic properties. In EPDM, the oxygen permeability is much greater, which leads to a more homogeneous degradation across the whole sample and thus resulted in a higher compression set. The low compression set of FKM shows the outstanding high-temperature properties of this material. T2 - Annual Meeting on Nuclear Technology 2015 CY - Berlin, Germany DA - 2015-05-05 KW - Elastomer KW - Rubber KW - Aging KW - Lifetime KW - Seal KW - Cask KW - Compression PY - 2015 SN - 978-3-926956-98-9 SP - 1 EP - 10(?) PB - INFORUM-Verl. u. Verwaltungsges. AN - OPUS4-33782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of elastomeric seals for storage containers T2 - IRC 2015 - International rubber conference / DKT 2015 - Deutsche Kautschuk-Tagung N2 - At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes the investigation of elastomeric seals applied in the containers. Besides examining the low-temperature behavior of elastomeric seals, it is our goal to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Furthermore, we deem it necessary to exceed the requirements given in the ageing standard DIN 53508 and take into account diffusion-limited oxidation (DLO) effects and non-Arrhenius behavior when making lifetime predictions. Therefore, we started an ageing programme with selected rubbers (HNBR, FKM and EPDM) which are oven-aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using different models and check which one is appropriate. Samples are examined at different times up to 5 years. In order to be able to compare between compressed and relaxed rubber, they are aged in two conditions: the undeformed O-ring state as well as compressed between plates with a compression of 25 % corresponding to the actual compression during service. Additionally, we are ageing samples in flanges that allow leakage rate measurements which is the central performance criterion. Analysis methods include hardness as a quick indicator, compression set and compression stress relaxation as measures reflecting the actual properties of a compressed seal. Additionally, we are applying classical polymer analysis methods like dynamic mechanic analysis and thermogravimetric analysis which show changes in the polymeric structure due to chain scission and crosslinking. Furthermore, we are testing the leakage rate of the O-rings in order to correlate the changes in physical properties to the actual performance of the seal. First results of samples aged up to 100 days show a strong increase in hardness for HNBR, a moderate increase for EPDM and hardly a change for FKM. A similar result is seen in the compression set of samples aged 100 d at 100 °C in compression as HNBR has reached 60 %, EPDM 25 % and FKM 15 % compression set. However, after ageing at 150 °C, EPDM shows a worse performance with 95 % compression set compared to HNBR with only 80 %. This is probably due to DLO effects in HNBR that appear because of the fast ageing and low oxygen permeability in HNBR. This leads to a deficit of oxygen in the center of the sample which is thus protected from ageing and can retain elastic properties. The full paper shall discuss the changes in material properties observed to date and the impact on the performance of elastomeric seals. T2 - IRC 2015 - International rubber conference CY - Nürnberg, Germany DA - 29.06.2015 KW - Elastomer KW - Rubber KW - Aging KW - Lifetime KW - Seal KW - Cask KW - Compression PY - 2015 SP - 1 EP - 10 AN - OPUS4-34939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -