TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging of elastomeric seals for storage casks T2 - WM2015 Conference (Proceedings) N2 - Elastomeric seals are used in many containers, including casks for radioactive waste. However, like all polymers, elastomers are prone to aging, which leads to a loss of sealing force and the ability for recovery which can ultimately result in leakage. Therefore it is important to be able to define an end-of-lifetime criterion and to judge the lifetime of elastomeric seals. For this reason, we started an aging program on three kinds of rubbers (HNBR, EPDM, FKM), monitoring the change of properties at four different aging temperatures over extended periods up to five years. The measured data is used for lifetime prediction by applying a suitable model. T2 - WM2015 Conference CY - Phoenix, Arizona, USA DA - 15.03.2015 KW - Aging KW - Elastomer KW - Seal KW - Leakage KW - Compression PY - 2015 SN - 978-0-9828171-4-8 SP - 15080, 1 EP - 12 AN - OPUS4-33253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of elastomeric seals for storage containers T2 - Annual Meeting on Nuclear Technology 2015 N2 - At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to audit the safety of casks designed for transport and/or storage of radioactive material. With regard to the requirements on long-term safety of the containers, it is necessary to evaluate the service lifetime of the elastomeric seals used in the containers. With ageing, the elastomers will gradually lose their elasticity and their ability for recovery, which might result in a leakage above the allowed level or in a release of radioactivity during an incident. It is important to know the rate of degradation and which property can be used as an practical and easily measurable end-of-lifetime criterion. For this reason, we devised ageing experiments on different kinds of elastomers, namely FKM, EPDM and HNBR. The former two are actually used in containers for radioactive wastes – either as auxiliary seal in casks containing high activity waste, or as main seal in casks for medium or low activity waste. The latter is an often used seal material that is tested for comparative reasons. In our ageing program, these three materials are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using a suitable model. They are examined at logarithmic time intervals of several days up to 5 years. The samples are aged in their undeformed O-ring state as well as compressed between flanges with a deformation corresponding to the actual compression during service. Thus we can compare the ageing between relaxed and stressed sample. Additionally, we are ageing samples in flanges that allow leakage rate measurements. Other measurements include monitoring of the recovery force of the seal and the compression set. Furthermore, the samples are examined by thermal and dynamic-mechanical analysis for detecting changes in the glass transition temperature due to crosslinking or chain scission in the material. Besides, hardness is measured as a practical macroscopic indicator. Until now, we have analyzed samples aged up to 100 days. At the highest ageing temperature of 150 °C, the compressed EPDM has already reached a compression set of 95 %, while HNBR and FKM have reached 80 % and 30 %, respectively. Furthermore, HNBR has reached a Shore D hardness of 85, which is an immense increase after the initial value of 80 Shore A. However, when looking at the cross-section of the sample, it was obvious that only a layer of about 1 mm thickness has become so hard, while the inner part remained rubbery. This shows that there has been intense crosslinking mostly near the surface of the HNBR which forms a kind of oxygen diffusion barrier, inhibiting the thermooxidation of the inner part of sample which can retain elastic properties. In EPDM, the oxygen permeability is much greater, which leads to a more homogeneous degradation across the whole sample and thus resulted in a higher compression set. The low compression set of FKM shows the outstanding high-temperature properties of this material. T2 - Annual Meeting on Nuclear Technology 2015 CY - Berlin, Germany DA - 2015-05-05 KW - Elastomer KW - Rubber KW - Aging KW - Lifetime KW - Seal KW - Cask KW - Compression PY - 2015 SN - 978-3-926956-98-9 SP - 1 EP - 10(?) PB - INFORUM-Verl. u. Verwaltungsges. AN - OPUS4-33782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of elastomeric seals for storage containers T2 - IRC 2015 - International rubber conference / DKT 2015 - Deutsche Kautschuk-Tagung N2 - At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes the investigation of elastomeric seals applied in the containers. Besides examining the low-temperature behavior of elastomeric seals, it is our goal to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Furthermore, we deem it necessary to exceed the requirements given in the ageing standard DIN 53508 and take into account diffusion-limited oxidation (DLO) effects and non-Arrhenius behavior when making lifetime predictions. Therefore, we started an ageing programme with selected rubbers (HNBR, FKM and EPDM) which are oven-aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using different models and check which one is appropriate. Samples are examined at different times up to 5 years. In order to be able to compare between compressed and relaxed rubber, they are aged in two conditions: the undeformed O-ring state as well as compressed between plates with a compression of 25 % corresponding to the actual compression during service. Additionally, we are ageing samples in flanges that allow leakage rate measurements which is the central performance criterion. Analysis methods include hardness as a quick indicator, compression set and compression stress relaxation as measures reflecting the actual properties of a compressed seal. Additionally, we are applying classical polymer analysis methods like dynamic mechanic analysis and thermogravimetric analysis which show changes in the polymeric structure due to chain scission and crosslinking. Furthermore, we are testing the leakage rate of the O-rings in order to correlate the changes in physical properties to the actual performance of the seal. First results of samples aged up to 100 days show a strong increase in hardness for HNBR, a moderate increase for EPDM and hardly a change for FKM. A similar result is seen in the compression set of samples aged 100 d at 100 °C in compression as HNBR has reached 60 %, EPDM 25 % and FKM 15 % compression set. However, after ageing at 150 °C, EPDM shows a worse performance with 95 % compression set compared to HNBR with only 80 %. This is probably due to DLO effects in HNBR that appear because of the fast ageing and low oxygen permeability in HNBR. This leads to a deficit of oxygen in the center of the sample which is thus protected from ageing and can retain elastic properties. The full paper shall discuss the changes in material properties observed to date and the impact on the performance of elastomeric seals. T2 - IRC 2015 - International rubber conference CY - Nürnberg, Germany DA - 29.06.2015 KW - Elastomer KW - Rubber KW - Aging KW - Lifetime KW - Seal KW - Cask KW - Compression PY - 2015 SP - 1 EP - 10 AN - OPUS4-34939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Van Breugel, K. ED - Koenders, E.A.B. T1 - Approach for the investigation of long-term behaviour of elastomeric seals for transport and storage packages T2 - AMS 14 - Ageing of materials & structures - Proceedings of the 1st ageing of materials & structures 2014 conference N2 - Elastomers are widely used as main sealing materials for Containers for low and intermediate Ievel radioactive waste and as additional component to metal seals in spent fuel and high active waste Containers. According to appropriate guidelines and regulations safe enclosure of the radioactive Container contents has to be guaranteed for long storage periods as well as down to temperatures of -40 °C for transportation. Therefore the understanding of seal behaviour in general is of high importance and ageing of elastomeric seals has to be considered with regard to possible dynamic events taking possibly place during transport after storage. T2 - 1st Ageing of materials & structures 2014 conference CY - Delft, The Netherlands DA - 26.05.2014 KW - O-Ring KW - Seal KW - Ageing KW - Elastomer KW - Compression set PY - 2014 SN - 978-94-6186-313-3 SP - 87 EP - 93 AN - OPUS4-30820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - von der Ehe, Kerstin A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Stark, Wolfgang T1 - Understanding low temperature properties of elastomer seals JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - Elastomers are widely used as the main sealing materials for containers for low and intermediate level radioactive waste and as an additional component to metal seals in spent fuel and high active waste containers. The safe encapsulation of the radioactive container inventory has to be guaranteed according to regulation and appropriate guidelines for long term storage periods as well as for temperatures as low as -40°C during transport. Therefore, the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of elastomers are strongly temperature dependent. At low temperatures, this is caused by the rubber-glass transition (abbreviated: glass transition). During continuous cooling, the material changes from a rubber-like entropy elastic to a stiff energy elastic behaviour, which allows nearly no strain or retraction. Hence, rubbers are normally used above their glass transition, but the minimum working temperature limit is not defined precisely; this can cause problems during the above noted applications. Therefore, the lower operation temperature limit of elastomer seals must be determined in dependence of the material properties. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) are combined with standardised measurements to determine the compression set according to ISO 815. To reduce the test time of the standard tests, a faster technique than normally used was developed. Additionally, the breakdown temperature of the sealing function of complete O ring seals was measured in a component test set-up to compare it with the results of the other tests. The experimental set-up is capable of measuring the leakage rate at low temperatures by the pressure rise method. A fluorocarbon rubber (FKM) was selected for this investigation as it is often used for radioactive waste containers. The materials (seals and test sheets) were purchased from a commercial seal producer. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2011 DO - https://doi.org/10.1179/1746510911Y.0000000004 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 2 SP - 83 EP - 88 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-24015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Weber, Mike A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Performance of elastomer seals in transport and storage casks T2 - International conference on management of spent fuel from nuclear power reactors: An integrated approach to the back end of the fuel cycle N2 - Elastomer seals are widely used as barrier seals in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In addition, they are also used for spent fuel storage and transportation casks (dual purpose casks (DPC)) as auxiliary seals to allow leakage rate measurements of metal barrier seals for demonstration of their proper assembling conditions. Depending on the area of use, the rubber materials have to demonstrate proper sealing performance with regard to mechanical, thermal, and environmental conditions as well as irradiation during the entire operation period. Concerning DPC, degradation effects should be limited in a way that, for example, effects from potentially released decomposition elements may not harm e.g. metal barrier seals. Leakage rate measurements should be possible also after long interim storage periods prior to subsequent transportation. Because of the complex requirements resulting from the various applications of containers for radioactive waste and spent nuclear fuel, BAM has initiated several test programmes for investigating the behaviour of elastomer seals. In this contribution the current status is described and first results are discussed. T2 - International conference on management of spent fuel from nuclear power reactors: An integrated approach to the back end of the fuel cycle CY - Vienna, Austria DA - 15.06.2015 KW - Ageing KW - Elastomer KW - Glass-rubber transition KW - Irradiation KW - Material model PY - 2015 SP - 1 EP - 8 AN - OPUS4-33553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -