TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Brandt, Guido A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Coefficients of Friction in Dependence on Aging State of Elastomers – Experimental Identification and Numerical Simulation of the Experiment T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference (PVP2022) N2 - Elastomer seals are mounted as barrier seals in lid systems of containers designed for transport and disposal of negligible heat generating radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). When the behavior of mounted seals under normal and hypothetical accident conditions of disposal and transport is to be simulated, a comprehensive knowledge of their complex mechanical properties at every state of aging is necessary. In previous works, BAM’s efforts in experimental investigations on specimen artificially aged at different temperatures and times and the implementation of the found results in finite element material models were presented. Additionally, our approaches to reproduce the aging process itself and to extrapolate the results of artificially accelerated aging to longer times were presented. Numerical simulations have shown that the behavior of the seal during mounting and one-sided pressurizing and the resulting performance values such as leakage rate strongly depend on the coefficient of friction (COF) between flange and seal. The friction coefficient, in turn, depends on the aging state of the elastomer material as several publications suggest (see below). Dynamic COF between an exemplary ethylene propylene diene rubber (EPDM) material and a stainless steel ball were determined by using a self-designed linear oscillation tribometer. Unaged and artificially aged EPDM specimen stored for 30 days and 100 days at a temperature of 150 °C were tested. A stainless steel ball (d=10 mm) is brought in contact with the specimen’s surface und loaded by normal forces of 2.5 N, 5 N, 10 N and 20 N. During a reciprocating movement of the EPDM sheet, the horizontal force/friction force is continuously measured, and the COF can be derived. It is well known that friction is a complex phenomenon especially in soft materials. It cannot be excluded that the measured friction force is influenced by additional force components, resulting from the ball’s grooving through the elastomer’s surface. This force depends on the penetration depth of the ball and on the resistance of the elastomer in its different states of aging. The latter results from microstructural changes i.e., chain scission and additional crosslinking that occur during aging which in turn influence the softening or hardening of the material. A finite element (FE) ABAQUS® model was developed to reproduce the measurement process. It should help to better understand the physical mechanisms and to quantify the percentage of measured forces resulting from real friction on the one hand and forces resulting from unintended side effects that could falsify the result on the other hand. The behavior of the elastomer in its different states of aging is reproduced by a FE material model already presented in previous works of BAM. T2 - ASME 2022 Pressure Vessels & Piping Conference (PVP2022) CY - Las Vegas, NV, USA DA - 17.02.2022 KW - Numerical Simulation KW - Radioactive Waste KW - Elastomers KW - Aging KW - Seal Behavior KW - Leakage Rate KW - Coefficient of Friction KW - Experiment PY - 2022 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-57093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Overview of ongoing long-term ageing investigations on elastomer seals JF - Rubber, fibres, plastics international - RFP N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) in Division 3.4 Safety of Storage Containers, one of our tasks is to evaluate the safety of containers designed for disposal of low and intermediate radioactive waste. As such containers might be transported before and stored until disposal, safe enclosure of the radioactive inventory is important for this time span. Elastomer O-rings are widely used as barrier seals in these containers. Thus, as for many other applications, an understanding of the practical effects of ageing degradation on elastomer seals during long-term exposure is mandatory for predicting the lifetime of such components. According to a long-term test programme on three kinds of rubbers (EPDM and FKM (relevant for application), HNBR (for comparison)), over several years we have studied the degradation and the change of mechanical properties (e.g. hardness, strain at break) at four different ageing temperatures (75 °C, 100 °C, 125 °C and 150 °C) as well as the change of sealing properties. Continuous and intermittent compression stress relaxation (CSR) measurements were performed in order to investigate the respective contribution of crosslinking and chain scission to the observed degradation effects. Thus, the degradation kinetics and mechanisms could be resolved more clearly. For assessing the seal performance, compression set (CS) and leakage rate measurements were conducted. The experimental results showed that the O-rings remained leak-tight under purely static conditions even when CSR, CS and mechanical properties already indicated far advanced degradation. For this reason, a modified leakage test involving a small and rapid partial decompression of the seal was developed that enabled determining an end-of-lifetime criterion for O-rings with a safety margin for thermal shrinkage and vibrations. KW - Seal KW - O-Ring KW - Ageing KW - Component tests PY - 2020 SN - 1863-7116 VL - 15 IS - 3 SP - 146 EP - 151 PB - Gupta CY - Ratingen AN - OPUS4-51161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Übersicht über laufende Untersuchungen zur Langzeitalterung von Elastomerdichtungen JF - Gummi, Fasern, Kunststoffe - GAK N2 - Eine Aufgabe des Fachbereichs 3.4 Sicherheit von Lagerbehältern der Bundesanstalt für Materialforschung und -prüfung (BAM) ist es, die Sicherheit von Behältern zur Lagerung von radioaktivem Abfall mit vernachlässigbarer Wärmeentwicklung zu bewerten. Da solche Behälter vor der Entsorgung transportiert und gelagert werden, ist während dieser Zeit ein sicherer Einschluss des radioaktiven Inhalts von größter Bedeutung. Zur Abdichtung dieser Behälter sind Elastomer-O-Ringe weit verbreitet. Um für solche, wie auch für viele andere Anwendungen, eine Voraussage über die Lebensdauer dieser Komponenten treffen zu können, ist es unerlässlich zu verstehen, welchen Einfluss der durch Alterung hervorgerufene Abbau auf Dauer auf die Elastomerdichtungen hat. In einem Langzeittest wurden drei Kautschukarten (EPDM und FKM, die für die Anwendung relevant sind, und HNBR als Vergleich) über mehrere Jahre untersucht. Dabei wurden die Veränderungen der mechanischen Eigenschaften (z. B. Härte und Bruchdehnung) bei vier verschiedenen Alterungstemperaturen (75 °C, 100 °C, 125 °C und 150 °C) sowie das Dichtungsverhalten betrachtet. Um den Einfluss von Vernetzung und Kettenspaltung auf die beobachteten Alterungseffekte zu bestimmen, wurden Messungen zur kontinuierlichen und intermittierenden Druckspannungsrelaxation durchgeführt. Dadurch konnten Erkenntnisse über Kinetik und Mechanismus der Abbaureaktionen gewonnen werden. Zur Einschätzung des Dichtungsverhaltens wurden Durckverformungsrest und Leckagerate gemessen. Die Ergebnisse zeigen, dass die O-Ringe unter statischen Bedingungen auch dann dicht halten, wenn die Werte für Druckverformungsrest, Druckspannungsrelaxation und mechanische Eigenschaften schon auf einen fortgeschrittenen Alterungsabbau hindeuten. Aus diesem Grund wurde ein modifizierter Dichtigkeitsversuch mit einer geringen und schnellen teilweisen Entlastung der Dichtung entwickelt, mit dessen Hilfe sich ein Lebensdauerkriterium bestimmen lässt, das eine Sicherheitsspanne für thermische Schrumpfung und Vibrationen beinhaltet. KW - Alterung KW - O-ring KW - Elastomer Dichtung PY - 2020 SN - 0176-1625 VL - 73 IS - 07-08 SP - 326 EP - 332 PB - Gupta CY - Ratingen AN - OPUS4-51207 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Jaunich, Matthias ED - van Breugel, K. ED - Koleva, D. ED - Beek, T. T1 - Investigation of long-term behaviour of elastomeric seals for transport and storage packages T2 - The Aging of Materials and Structures - Towards Scientific Solutions for the Ageing of Our Assets N2 - Elastomers are widely used as the main sealing materials in Containers for low- and intermediate-level radioactive waste and as an additional component fo metal seals in spent-fuel and high-level waste containers. According to appropriate guidelines and regulations, safe enclosure of the radioactive container contents has to be guaranteed for lengthy storage periods of at least 40 years. Therefore, the understanding of seal ageing behaviour is of high importance and has to be considered with regard to possible dynamic events taking place during transport after storage. An accelerated ageing approach for compressed seals is presented, as well as some first results. KW - O Ring KW - Ageing KW - Rubber seal PY - 2018 SN - 978-3-319-70192-9 DO - https://doi.org/10.1007/978-3-319-70194-3_2 SP - 17 EP - 25 PB - Springer AN - OPUS4-43248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep investigations on aluminum seals for application in radioactive waste containers T2 - Proceedings of the International Conference on Aluminum Alloys 2018 N2 - In Germany spent nuclear fuel and high level radioactive waste is stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. The used metal seals consist of three components as can be seen in the cross-sectional view in Figure 1. The innermost part is a helical spring that is surrounded by an inner jacket made of stainless steel. The outer jacket that is made of a softer material which in case of assembly in the aforementioned storage containers is silver or aluminum (i.e. Al 99.5). During application the seal is compressed and due to the restoring force of the helical spring, the outer jacket is plastically deformed and adapts to the sealing surface. Hence, leakage paths are closed and the sealing function is generated. In Germany the above-mentioned containers are licensed for up to 40 years of interim storage, which in case extended storage becomes necessary before a final repository is available will have to be extended to even longer periods. Therefore, the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads as well. At Bundesanstalt für Materialforschung und –prüfung (BAM) long-term investigations are being conducted in which seals are assembled in test flanges and aged at temperatures ranging from room temperature to 150°C for accelerated aging. The aged seals are tested semi-annually (after the first 6 months in which the seals are tested more frequently) regarding the sealing performance, the remaining seal force, and the useable resilience upon decompression. Results of these investigations have been published over the past years (e.g. Grelle, Wolff, Probst, Jaunich, & Völzke, 2017; Völzke, Wolff, Probst, Nagelschmidt, & Schulz, 2014). It was found that the seal force and the useable resilience decrease with time and temperature, which is in agreement with the result of other studies (Sassoulas et al., 2006; Wataru et al., 2016) as well. Geometry change of the outer jacket has been identified as the main reason for this seal behavior. At the prevailing operating temperatures and stresses the aluminum is subjected to creep deformation leading to a thinning of the outer jacket. Since the seal groove depth remains unchanged the helical spring expands, which in turn leads to a decrease of the generated spring and seal force. Although the main reason for the change of seal parameters over time and temperature is known, a detailed characterization of the seal behavior and a reliable prediction of the parameter development for aging times that exceed the experimental time frame have not been possible, yet. For deeper understanding of the aging processes, an Investigation program, which is covered in this contribution, is conducted at Bundesanstalt für Materialforschung und –prüfung (BAM) that focusses on the behavior of the aluminum jacket and its influence on the long-term sealing performance. The program investigates properties of material samples as well as the behavior of the seal as a component. Original sheet material of the same aluminum that is used for manufacturing of the seals is investigated in compression creep tests. For this, a DMA (dynamic mechanical analysis) machine is employed (here used for static tests) that allows for a measurement of the specimens deformation under forces of up to 500 N. The advantage of this method is that the original material can be tested in the same shape as used for the seals which is 0.5 mm thick sheet material. For investigation of tensile creep standard specimens are used, that were machined from surrogate material of the same composition and annealing condition. Furthermore, aluminum seals that are cut into smaller segments are assembled in flanges and placed in heating chambers at temperatures ranging from 23°C to 150°C. After different periods of time from 3 days to 300 days the segments are taken out of the flanges and are investigated, thus giving information on different states of aging. Measurements of the development of the seal contact width and the aluminum jacket thickness are done with an optical microscope. Further investigations on the segments will include metallography and hardness measurements. From the detailed material and component behavior including the results of the long-term seal force and useable resilience investigations a better understanding of the overall seal behavior can be gained. The aim is to contribute to the development of material models and analytical approaches for the prediction of the sealing behavior in dependence of time and temperature. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SN - 978-1-926872-41-4 SP - 1 EP - 2 AN - OPUS4-45844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Albouy, P.-A. A1 - Häcker, Ralf A1 - Stock, Daniel T1 - Overview of ongoing research and future prospects on polyethylene neutron shielding materials at bam T2 - PATRAM22 N2 - The extension of the interim storage period of radioactive waste before disposal will cause additional challenges for the nuclear waste management in Germany, so that an extensive knowledge of the long-term performance of casks, including their components and inventories, will be required for future extended storage licenses. Ultra-high and high molecular weight polyethylenes ((U)HMW-PE) are used for neutron shielding purposes in casks for storage and transport of spent fuel and high-level waste due to their extremely high hydrogen content. During their service life of several decades as cask components, the PE materials are exposed to neutron and gamma radiation from the radioactive inventory of the casks, mechanical assembling stresses and temperature. All these combined effects affect the material properties of such components which in turn may be crucial for some possible accident scenarios. At the Bundesanstalt für Materialforschung und -prüfung (BAM), the effects of high temperature exposure in combination with subsequent or previous irradiation were investigated with a comprehensive aging program including thermal aging at 125 °C for different aging periods up to 5 years and irradiation with doses ranging from 50 to 600 kGy. This contribution provides an overview of the ongoing research related to the structural changes of (U)HMW-PE induced by gamma irradiation and high temperature exposure and focuses on current research perspectives at BAM with regard to the prediction of the dynamic behavior of the material during extended interim storage in case of an accident scenario. First results of the coupled effect of temperature, radiation and mechanical loading will be presented. The effect of microstructural changes induced by gamma irradiation and high temperature on the mechanical behavior of (U)HMW-PE will be assessed. T2 - PATRAM22 CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - (U)HMWPE KW - Ageing KW - Irradiation KW - WAXD KW - SHPB PY - 2023 SP - 1 EP - 10 AN - OPUS4-57707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Simulation of compression set of epdm o-rings during aging T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference PVP2022 N2 - It is common practice in the application of finite element analysis to model compression set (CS) of elastomers during aging with two different material models according to the two-network theory of Tobolsky. The theory relies on the existence of two networks. The first one represents the original network after vulcanization and is sensitive to chain scission. The second network accounts for the formation of additional crosslinking during aging. Besides the use of user subroutines to describe the two-network model, an element overlay technique is also needed as the full set of both material behaviors did not exist for assignment to a single element. This element overlay technique is valuable for research and developmental purposes but makes extension to industrial usage quite challenging. Our goal is to simulate the CS of elastomers after long-term aging in a commercial finite element software with no need for extra subroutine codes or mesh superposition. Ethylene propylene diene (EPDM) O-rings were aged in a compressed state at 75 °C, 100 °C, 125 °C and 150 °C for up to 183 days. Investigations of the experimental test results were used to identify material models and their parameters to develop a finite element model to simulate CS. The model was implemented in the finite element software ABAQUS/Standard® with a sequential temperature-displacement coupling. Regarding the influence of temperature, the Arrhenius equation is adopted for the time-temperature relationship. The activation energy value that is required for the simulation is firstly determined from shifting the experimental CS results with the time-temperature superposition technique and plotting the shift factors in an Arrhenius diagram. The experiments were compared with the simulation results. Afterwards different activation energies were used in the simulation and discussed. A suitable choice of the activation energy value with regard to the reference temperature and the test temperature is presented. With the chosen activation energies, the match between numerical CS values after long-term aging and the experimental results was improved. T2 - ASME 2022 Pressure Vessels & Piping Conference CY - Las Vegas, USA DA - 17.07.2022 KW - Simulation KW - Compression set KW - EPDM KW - Aging PY - 2022 SP - 1 EP - 9 AN - OPUS4-57370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers JF - Nuclear future N2 - Long-term investigations performed at BAM look to extend the state of knowledge on safety-related components of interim storage containers. Metal seals act as the primary sealing barrier in the bolted double lid closure system of the containers. The behaviour of metal seals has been investigated for ageing times up to 8.5 years and for various temperatures. The main cause for reduction in useable resilience overtime was due to creep deformation of the outer jacket of the seal. KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2018 SN - 1745-2058 SP - 32 EP - 34 PB - Nuclear Institute CY - London AN - OPUS4-48206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Stuke, M. T1 - Long-term evaluation of sealing systems for radioactive waste packages T2 - Proceedings of the 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 SP - 57 EP - 62 AN - OPUS4-48225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Altenbach, H. ED - Hitzler, L. ED - Johlitz, M. ED - Merkel, M. ED - Öchsner, A. T1 - Analysis of Heterogeneous Ageing of HNBR O-Rings T2 - Lectures Notes on Advanced Structured Materials 2 N2 - Abstract Hydrogenated nitrile butadiene rubber (HNBR) elastomer was thermo-oxidatively aged at different temperatures up to 150 °C. Fourier transform infrared spectroscopy (FTIR), compression stress relaxation (CSR) and international rubber hardness degree (IRHD) microhardness were used to characterise the chemo-mechanical changes of HNBR O-rings during thermo-oxidative ageing. FTIR shows the development of carbonyl, methyl and ester groups but the nitrile content was not affected by ageing. The effect of sample geometry during CSR was investigated. CSR data were converted through integrated kinetic laws. The conversion has proven its sensibility to detect heterogeneous ageing. This was confirmed by the IRHD measure-ments across the section of O-rings. The influence of compression during ageing was assessed through IRHD measurements across the section of compressed and uncom-pressed aged O-rings. The DLO effect was more pronounced in compressed O-rings. By applying the model of Wise et al., theoretical IRHD and oxidation profiles were determined on the basis of IRHD experimental data of compressed O-rings. Good agreements between the experimental and the theoretical IRHD profiles in the core region were obtained. However, near the edge, the theoretical IRHD values were overestimated. KW - Ageing KW - Rubber seals KW - Stress relaxation KW - Modelling PY - 2024 SN - 978-3-031-49042-2 DO - https://doi.org/10.1007/978-3-031-49043-9 SN - 1869-8433 SP - 331 EP - 348 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-59769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -