TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Testing and numerical simulation of elastomeric seals under consideration of time dependent effects N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad repository for low and intermediate level waste, extended periods of interim storage will become more relevant in Germany. BAM is involved in most of the cask licensing procedures and is responsible for the evaluation of cask-related long-term safety issues. Elastomeric seals are widely used as barrier seals for containers for low and intermediate level radioactive waste. In addition they are also used as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). To address the complex requirements resulting from the described applications, BAM has initiated several test programs for investigating the behavior of elastomeric seals. These include experiments concerning the hyperelastic and viscoelastic behavior at different temperatures and strain rates, the low temperature performance down to -40°C, the influence of gamma irradiation and the aging behavior. The first part of the paper gives an overview of these tests, their relevant results and their possible impact on BAM’s work as a consultant in the framework of approval and licensing procedures. The second part presents an approach of the development of a finite element model using the finite element code ABAQUS®. The long-term goal is to simulate the complex elastomeric behavior in a complete lid closure system under specific operation and accident conditions. T2 - ASME 2016 Pressure Vessels & Piping Conference (PVP2016) CY - Vancouver, BC, Canada DA - 17.07.2016 KW - Elastomeric seals KW - Testing KW - Low temperature behavior KW - Aging KW - Simulation KW - Time dependent effects PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - Paper 63192, 1 EP - 10 AN - OPUS4-37046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Numerical simulation of the behaviour of elastomer seals under consideration of time dependent effects N2 - Due to delays in the site-selection procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad-repository for low and intermediate level waste without heat generation, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid Systems of transport and storage casks whether used as auxiliary seals in spent fuel caslcs or as primary seals for low and intermediate level waste packages is an important issue in this context (Jaunich, 2013; Jaunich, 2014; Kömmling, 2015). The polymeric structure of these seals causes a complex mechanical behaviour with time-dependent elasticity reduction and loss of elastic recovery. The paper presents first results of a comprehensive test Programme consisting of several static and dynamic mechanical short- and long-term tests which have been carried out at BAM on specimens made of representative types of elastomers, fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM). The investigation of the test results used to identify material models and their Parameters as well as the development of two finite element models for the numerical Simulation of tension and compression tests using the finite element code ABAQUS® are described. The calculation results are presented in comparison to the test results. The influence of important material and test parameters was investigated and discussed in sensitivity analyses. T2 - RAMTRANSPORT 2015 - International conference on the radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Numerical analysis KW - Extended interim storage KW - Elastomer seals PY - 2015 SP - Session 4, Paper 28, 1 EP - 9 AN - OPUS4-33832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar A1 - Probst, Ulrich T1 - Testing and Numerical Simulation of Elastomers - From Specimen Tests to Simulation of Seal Behavior under Assembly Conditions N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level radioactive waste as well as in construction of the already licensed Konrad repository for low and intermediate level radioactive waste, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid systems of transport and storage casks, whether used as auxiliary seals in spent fuel casks or as primary seals for low and intermediate level waste packages, is an important issue in this context. The polymeric structure of these seals causes a complex mechanical behavior with time-dependent sealing force reduction. The results of a comprehensive purpose-designed test program consisting of basic compression and tension tests as well as relaxation tests on unaged specimens of representative types of elastomers (fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM)) at different temperatures and strain rates are presented. They were used to identify the constitutive behavior and to obtain parameters for finite element material models provided by the computer code ABAQUS®. After estimating the influence of uncertainties such as Poisson’s ratio and friction coefficient by sensitivity analyses, the chosen parameters had to prove their suitability for the finite element simulation of the specimen tests themselves. Based on this preliminary work the simulation of a specific laboratory test configuration containing a typical elastomer seal with circular cross section is presented. The chosen finite element material model and the implemented parameters had to show that they are able to represent not only the specimen behavior under predominantly uniaxial load but also the more complex stress states in real components. Deviations between the measured and calculated results are pointed out and discussed. For the consideration of long-term effects in the simulation of elastomer behavior, test results of aged specimens are needed. First information about a new test program, started recently and planned to provide these data, are given. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Time dependent effects KW - Low temperature behavior KW - Elastomeric seals KW - Aging KW - Simulation KW - Testing PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A035, 1 EP - 8 AN - OPUS4-41841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Three-dimensional thermal expansion of neat and irradiated (U)HMWPE materials at elevated temperatures N2 - The thermal expansion of polymeric parts can be an issue in many applications where the available space is limited, or exact dimensions of the part are required. For this study, a device was designed and built that allowed measuring the thermal expansion simultaneously in all three spatial directions on cubic samples with real-scale dimensions (78 mm edge length). The results are shown between 25 °C and 125 °C for two PE materials, one HMWPE and one tempered UHMWPE, for non-irradiated samples as well as cubes that have been irradiated with 100 and 400 kGy. The results measured with the new device were very similar to those measured with conventional thermo-mechanical analysis equipment and to literature data of UHMWPE. The HMWPE material shows a much larger thermal expansion coefficient in one direction compared to the other two directions during the first heating due to frozen stresses from the pressing step during material manufacturing. These stresses are mostly released by the expansion during the first heating, so that the expansion during the second heating is more uniform. The overall volumetric expansion is the same for both heating runs. By contrast, the tempered UHMWPE material shows no significant difference between first and second heating run, as the stresses from processing could already relax in the tempering step. The irradiation treatment does not affect the values significantly for the given test set-up. KW - Lupolen KW - Ultra high molecular weight polyethylene KW - GUR KW - Coefficient of thermal expansion KW - High temperature PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563987 SN - 0142-9418 VL - 117 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-56398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Goral, Milan A1 - Kömmling, Anja A1 - Probst, Ulrich A1 - Wossidlo, Peter A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Langzeitversuche über 10 Jahre an Federkern-Metalldichtungen mit Aluminium- bzw. Silberummantelungen N2 - Federunterstützte Metalldichtungen mit Aluminium(Al)- oder Silber(Ag)-Ummantelung werden u.a. in Behältern für Wärme entwickelnde radioaktive Abfälle eingesetzt, da diese Dichtungen eine sehr gute Dichtheit gewährleisten sowie Langlebigkeit und Beständigkeit gegenüber erhöhten Temperaturen und radioaktiver Strahlung aufweisen. Auch wenn die Sicherheit solcher Behälter und der verwendeten Dichtungen vielfach belegt wurde, sind sie Gegenstand andauernder Forschung, etwa im Hinblick auf eine absehbar benötigte verlängerte Zwischenlagerdauer. Aus diesem Grund werden an der Bundesanstalt für Materialforschung und -prüfung (BAM) im Fachbereich 3.4 „Sicherheit von Lagerbehältern“ seit über 20 Jahren Versuche an solchen Metalldichtungen durchgeführt. Dabei sollen zusätzliche Erkenntnisse hinsichtlich der Sicherheitsreserven der Dichtungen in unterstellten Störfallszenarien (axiale Bewegung des Deckelsystems bzw. Aufweitung der Nutgeometrie) und insbesondere detailliertere Erkenntnisse zum Langzeitverhalten gewonnen werden. KW - Federunterstützte Metalldichtungen KW - Transport- und Lagerbehälter für radioaktive Stoffe KW - Langzeitversuche KW - Alterung KW - Dichtheit KW - Leckagerate KW - Helium-Dichtheitsprüfung PY - 2023 VL - 2023 SP - 43 EP - 63 PB - ISGATEC GmbH CY - Mannheim AN - OPUS4-56399 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Oxidative ageing of elastomers: Experiment and modelling N2 - During an extensive test programme at the Bundesanstalt für Materialforschung und prüfung, material property changes of EPDM O-rings were investigated at different ageing times and two ageing temperatures of 125∘C and 150∘C. To exclude possible diffusion-limited oxidation (DLO) effects that can distort the data, IRHD microhardness measurements were taken over the cross section of compressed O-rings. Continuous stress relaxation measurements were taken on samples free of DLO effects. The additional effect of physical processes to irreversible chemical ones during a long-term thermal exposure is quantified by the analysis of compression set measurements under various test conditions. By combining the different experimental methods, characteristic times relative to the degradation processes were determined. On the basis of experimental data, a microphysically motivated model that takes into account reversible and irreversible processes was developed. The parameter identification strategy of the material model is based on our experimental investigations on homogeneously aged elastomer O-rings. The simulated results are in good agreement with the experiments. KW - Compression stress relaxation KW - Compression set KW - IRHD microhardness KW - Modelling PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545910 SN - 1432-0959 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-54591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 U6 - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Brandt, Guido A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Coefficients of Friction in Dependence on Aging State of Elastomers – Experimental Identification and Numerical Simulation of the Experiment N2 - Elastomer seals are mounted as barrier seals in lid systems of containers designed for transport and disposal of negligible heat generating radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). When the behavior of mounted seals under normal and hypothetical accident conditions of disposal and transport is to be simulated, a comprehensive knowledge of their complex mechanical properties at every state of aging is necessary. In previous works, BAM’s efforts in experimental investigations on specimen artificially aged at different temperatures and times and the implementation of the found results in finite element material models were presented. Additionally, our approaches to reproduce the aging process itself and to extrapolate the results of artificially accelerated aging to longer times were presented. Numerical simulations have shown that the behavior of the seal during mounting and one-sided pressurizing and the resulting performance values such as leakage rate strongly depend on the coefficient of friction (COF) between flange and seal. The friction coefficient, in turn, depends on the aging state of the elastomer material as several publications suggest (see below). Dynamic COF between an exemplary ethylene propylene diene rubber (EPDM) material and a stainless steel ball were determined by using a self-designed linear oscillation tribometer. Unaged and artificially aged EPDM specimen stored for 30 days and 100 days at a temperature of 150 °C were tested. A stainless steel ball (d=10 mm) is brought in contact with the specimen’s surface und loaded by normal forces of 2.5 N, 5 N, 10 N and 20 N. During a reciprocating movement of the EPDM sheet, the horizontal force/friction force is continuously measured, and the COF can be derived. It is well known that friction is a complex phenomenon especially in soft materials. It cannot be excluded that the measured friction force is influenced by additional force components, resulting from the ball’s grooving through the elastomer’s surface. This force depends on the penetration depth of the ball and on the resistance of the elastomer in its different states of aging. The latter results from microstructural changes i.e., chain scission and additional crosslinking that occur during aging which in turn influence the softening or hardening of the material. A finite element (FE) ABAQUS® model was developed to reproduce the measurement process. It should help to better understand the physical mechanisms and to quantify the percentage of measured forces resulting from real friction on the one hand and forces resulting from unintended side effects that could falsify the result on the other hand. The behavior of the elastomer in its different states of aging is reproduced by a FE material model already presented in previous works of BAM. T2 - ASME 2022 Pressure Vessels & Piping Conference (PVP2022) CY - Las Vegas, NV, USA DA - 17.02.2022 KW - Numerical Simulation KW - Radioactive Waste KW - Elastomers KW - Aging KW - Seal Behavior KW - Leakage Rate KW - Coefficient of Friction KW - Experiment PY - 2022 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-57093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of HNBR, EPDM and FKM O-rings N2 - HNBR, EPDM and FKM O-rings were aged uncompressed and compressed at 75 °C, 100 °C, 125 °C and 150 °C for up to 1 year. HNBR exhibited the strongest ageing effects with high increases of hardness and glass transition temperature. Furthermore, heterogeneous ageing caused by diffusion-limited oxidation effects had a significant influence for HNBR at ageing temperatures of 125 °C and 150 °C. EPDM showed similar property changes as HNBR, but less pronounced. FKM displayed only minor ageing effects. O-rings aged in compression exhibited considerable compression set (CS). CS data was used for a time-temperature shift and resulting master curve construction. Leakage rate measurements showed that O-rings can remain leak tight under static conditions even if material properties have already deteriorated strongly. N2 - HNBR-, EPDM- und FKM-O-Ringe wurden unverpresst und verpresst für bis zu 1 Jahr bei 75 °C, 100 °C, 125 °C und 150 °C gealtert. HNBR wies mit hohen Anstiegen von Härte und Glasübergangstemperatur die stärksten Alterungseffekte auf. Weiterhin hatte heterogene Alterung aufgrund von diffusionsbegrenzten Oxidationseffekten einen wesentlichen Einfluss auf HNBR bei Alterungstemperaturen von 125 °C und 150 °C. EPDM zeigte ähnliche Eigenschaftsänderungen wie HNBR, allerdings schwächer ausgeprägt. FKM wies nur geringfügige Alterungseffekte auf. O-Ringe, die verpresst gealtert wurden, hatten eine starke bleibende Verformung (DVR). Die gemessenen DVRWerte wurden für eine Zeit-Temperatur-Verschiebung und die Konstruktion einer Masterkurve genutzt. Leckageratenmessungen zeigten, dass O-Ringe unter statischen Bedingungen dicht bleiben können, auch wenn die Materialeigenschaften schon stark degradiert sind. KW - Aging KW - Degradation KW - Leakage KW - Compression KW - Seal PY - 2016 SN - 0022-9520 SN - 0948-3276 VL - 69 IS - 4 SP - 36 EP - 42 PB - Hüthig CY - Heidelberg, Germany AN - OPUS4-36336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Revealing effects of chain scission during ageing of EPDM rubber using relaxation and recovery experiment N2 - Both chain scission and crosslinking reactions occur during ageing of EPDM rubber. However, with many conventional polymer analysis methods such as hardness and DMA, it is hardly possible to obtain information about the contribution of each reaction type to the measured data. For example, hardness and Tg both increase during ageing of EPDM, indicating crosslinking during ageing, but it is not clear whether this is partly counterbalanced by chain scission reactions which would lower hardness and Tg. An indication that chain scission reactions probably counteract the hardness or Tg increase by crosslinking is given by Compression Set (CS) measurements. CS exhibits a higher change than hardness or Tg, as CS increases additively through both chain scission and crosslinking reactions. In order to elucidate the share of chain scission reactions in the total degradation, a method testing relaxation and recovery behaviour using DMA equipment was applied. The method revealed the strong influence of chain scissions, leading to more pronounced relaxation and higher residual strain after compression. KW - Compression set KW - DMA KW - Nnetwork KW - Crosslinking PY - 2016 U6 - https://doi.org/10.1016/j.polymertesting.2016.10.026 SN - 0142-9418 SN - 1873-2348 IS - 56 SP - 261 EP - 268 PB - Elsevier Ltd. AN - OPUS4-38012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -