TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement JF - Polymer testing N2 - The method for the determination of compression set values with a Dynamic Mechanical Analysis (DMA) setup at low temperatures, which was presented previously, allows a much faster and readily automated procedure than the standardized compression set test according to ISO 815-2. This method is applied to a series of different elastomeric materials that are commonly used for sealing applications. The results of the compression set test are compared with results from thermal analysis to allow an in depth comparison of the material behaviour at low temperatures. Furthermore, a comparison between two EPDM materials is presented. These materials show very similar properties determined by thermo analytical methods such as Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) but differ clearly in their compression set behaviour. This comparison shows the importance and value of information of the compression set test in addition to thermal analysis to judge the behaviour of sealing materials and confirms the relevance of the new compression set test method for the investigation of low temperature properties of elastomers. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.07.016 SN - 0142-9418 VL - 31 IS - 8 SP - 987 EP - 992 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-26538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness T2 - Proceedings of the ASME 2021 Pressure Vessels & Piping Conference (PVP2021) N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - A new method to evaluate the low temperature function of rubber sealing materials JF - Polymer testing N2 - A new method for the evaluation of the low temperature properties of rubber materials is presented. The method emulates the standardized compression set measurement, which is frequently used for sealing materials, but can be performed within a considerably shorter time. The results are compared with the standard test and found to be qualitatively the same. Slight differences are discussed on the basis of the differences in the measurement procedures. Further data evaluation is done by fitting functions to describe the material behaviour. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2010 DO - https://doi.org/10.1016/j.polymertesting.2010.07.006 SN - 0142-9418 VL - 29 IS - 7 SP - 815 EP - 823 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-21914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Low temperature properties of rubber seals JF - Kautschuk, Gummi, Kunststoffe (KGK) N2 - Rubber is widely used as sealing material in various applications. In many fields the sealing function at low temperatures is necessary. Therefore the understanding of failure mechanisms is of high importance. Rubbers are normally used above their glass-rubber transition region but the minimum working temperature limit is not defined precisely. Therefore the lower operation temperature limit of rubber seals should be determined in dependence of the material properties. The results of Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are combined with the results of the standardized compression set according to ISO 815 respectively a modified test using the DMA equipment. N2 - Tiefentemperaturverhalten von Elastomerdichtungen Elastomere werden vielfach als Dichtungsmaterial für verschiedene Anwendungen eingesetzt. In vielen Bereichen ist die Funktion der Dichtung auch bei tiefen Temperaturen erforderlich. Daher ist das Verständnis des Versagensmechanismus von großer Bedeutung. Normalerweise werden Elastomere oberhalb ihres Glass-Gummi Übergangsbereiches eingesetzt aber die minimale Einsatztemperatur ist nicht exakt definiert. Daher ist es sinnvoll diese untere Temperatureinsatzgrenze in Abhängigkeit von den Materialeigenschaften zu bestimmen. Die Ergebnisse der DSC und der DMA werden mit den Ergebnissen des standardisierten Druckverformungsrestes nach ISO 815 und einer abgewandelten Messung mit der DMA kombiniert. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2011 SN - 0948-3276 SN - 0022-9520 IS - 03 SP - 52 EP - 55 PB - Hüthig CY - Heidelberg AN - OPUS4-23422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Insights for lifetime predictions of O-ring seals from five-year long-term aging tests JF - Polymer Degradation and Stability N2 - O-rings made of HNBR, EPDM and FKM were aged in the compressed and uncompressed state at 150 °C, 125 °C, 100 °C, 75 °C, 60 °C and 23 °C for aging times of up to five years. Hardness was measured and increased with aging time and temperature for HNBR and EPDM, but it remained practically constant for FKM. Indenter modulus measurements were performed on the lateral O-ring surface (that was free of DLO effects) to assess an influence of the compression during aging, but none was detected. The equilibrium compression set (CS) exhibited faster and stronger degradation than hardness and was used for lifetime predictions using the time-temperature superposition (TTS) principle. With an end-of-lifetime criterion of 70 % CS, lifetimes of 4.5 years, 50 years and 526 years at 75 °C were estimated for HNBR, EPDM and FKM, respectively. The activation energies derived from an Arrhenius plot of the shift factors from the TTS were 85 kJ/mol, 99 kJ/mol and 78 kJ/mol for HNBR, EPDM and FKM, respectively, revealing that a higher activation energy does not necessarily mean that the material has a higher lifetime at lower temperatures. Furthermore, the measured lifetime of EPDM O-rings at 100 °C (5 years) was compared to that predicted on the basis of the lifetime at 150 °C as well as 125 °C using the corresponding shift factors. The error of the prediction was only ± 4 %. However, this precise prediction could only be achieved using the five-year long-term aging data. When using only data from aging times up to 0.5 years and 2 years, the lifetime of EPDM O-rings at 100 °C was underestimated by 31 % and 22 %, respectively. KW - HNBR KW - EPDM KW - FKM KW - DLO KW - Hardness KW - Compression set KW - Rubber KW - Elastomer KW - Degradation PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2020.109278 VL - 179 SP - 109278 PB - Elsevier Ltd. AN - OPUS4-51060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Jaunich, Matthias T1 - Temperature-dependent leak tightness of elastomer seals after partial and rapid release of compression JF - Polymer Testing N2 - A device has been designed, built and tested that allows the investigation of effects of dynamic loads on the leak tightness of elastomer seals at low temperatures. With the test setup, the compression of the tested seal can be reduced by a defined degree in a time period of less than 1 s. For the evaluation of the leak tightness, leakage rates can be determined. It was shown that the rapid partial release of an elastomer seal leads to its failure already at the beginning of the rubber–glass transition and, therefore, at significantly higher temperatures than the loss of leak tightness observed under static conditions. KW - Sealing material KW - Elastomer KW - Dynamic loading KW - Low temperature behaviour KW - Leakage rate PY - 2015 DO - https://doi.org/10.1016/j.polymertesting.2015.09.009 SN - 0142-9418 VL - 48 SP - 44 EP - 49 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-34445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -