TY - CONF A1 - Dieck, S. A1 - Rosemann, Paul A1 - Kromm, Arne A1 - Ecke, M. A1 - Halle, Th. T1 - Reversed austenite for enhancing ductility of martensitic stainless steel N2 - The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening. T2 - 19. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 16.03.2016 KW - Martensite KW - Quenching and partitioning KW - Austenite PY - 2016 AN - OPUS4-39506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Rosemann, Paul A1 - Kromm, Arne A1 - Halle, T. T1 - Reversed austenite for enhancing ductility of martensitic stainless steel N2 - The novel heat treatment concept, “quenching and partitioning” (Q&P) has been devel-oped for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to mar-tensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffrac-tion. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability with-out loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening. T2 - 19. Werkstofftechnisches Kolloquium der TU Chemnitz CY - Chemnitz, Germany DA - 16.03.2017 KW - Quenching and partitioning KW - Martensitic stainless steels KW - Heat treatment KW - Transformation induced plasticity KW - High ductility PY - 2017 AN - OPUS4-39540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Reversed austenite for enhancing ductility of martensitic stainless steel N2 - The quenching and partitioning (Q+P) heat treatment enables a higher deformability of high strength martensitic steels. Therefore, it is necessary to have some metastable austenite in the microstructure, which transforms in martensite during plastic deformation (TRIP-effect). This condition is guaranteed by the quenching and the additional partitioning treatment. Due to local carbon diffusion retained austenite is stabilized and a partial reversion of austenite from martensite occurs. The Q+P heat treatment was investigated for the martensitic stainless steel 1.4034 (X46Cr13) concerning the influence of partitioning time. In line with these efforts metallographic, XRD- and EBSD-measurements were performed to characterize the microstructural evolution. The mechanical experiments included mechanical testing with different strain rates. The reversion of austenite by the partitioning treatment could be detected with EBSD- and XRD-measurements. Further-more the results of the mechanical testing showed improved values of strength and de-formability because of the Q+P heat treatment. T2 - International Conference on Martensitic Transformations CY - Chicago, Illinois, USA DA - 09.07.2017 KW - Heat treatment KW - Corrosion resistance KW - Martensite KW - Stainless steel KW - Quenching and partitioning PY - 2017 AN - OPUS4-41143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Enhanced properties of martensitic stainless steel due to austenite reversion N2 - The novel heat treatment concept of “Quenching and Partitioning” (Q&P) enables producing low alloyed martensitic steels with high strength and formability. Therefore austenite, retaining from a quenching temperature between Mf and Ms, is stabilised by carbon diffusion. This stabilised austenite transforms in martensite (TRIP effect) under mechanical loading. Current investigations on the Q&P heat treatment of martensitic stainless steels reveal a further enhancement of mechanical properties due to higher amounts of austenite. Thus a tensile strength of 1.800 MPa and a maximum elongation of 20 % are possible, while mechanical properties under compression are much higher due to a distinct SD effect. The presentation aims to gain a further understanding of the Q&P heat treatment and the resulting mechanical properties for the steel X46Cr13, especially the mechanical behaviour under dynamic mechanical loading condition. Results of drop work and Split Hopkinson Pressure Bar test confirms the findings of quasi static compression test. Furthermore, Charpy impact tests show higher impact toughness compared to the common heat treatment of quenching and tempering (Q&T). Complementary investigations indicate a higher corrosion resistance of Q&P compared to Q&T. T2 - 12th International Nordmetall Colloquium CY - Chemnitz, Germany DA - 05.12.2017 KW - Corrosion resistance KW - Heat treatment KW - Martensite KW - Quenching and partitioning KW - Stainless steel KW - KorroPad PY - 2017 AN - OPUS4-43339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -