TY - JOUR A1 - Hassler, J A1 - Matschat, Ralf A1 - Richter, Silke A1 - Barth, P. A1 - Detcheva, A.K. A1 - Waarlo, H.-J. T1 - Determination of 22 trace elements in high-purity copper including Se and Te by ETV-ICP OES using SF6, NF3, CF4 and H2 as chemical modifiers N2 - In supplementary work to the one published earlier, experiments with SF6, NF3, CF4 and H2 as new modifier gases for the matrix studied were performed. Our investigations were continued to improve the described analytical method and to achieve additional insights into the mechanism of analyte release. Our new survey is split in two parts. At first fluorinating modifiers were used to investigate the behaviour of a variety of trace elements (Ag, Al, As, Au, Bi, Cd, Co, Cr, Fe, Mg, Mn, Ni, P, Pb, Sb, Se, Si, Sn, Te, Ti, Zn and Zr). Most of them (exceptions Au, Se, and Te) could be effectively released from the copper matrix by thermo-halogenation reactions and by partial sub-sample evaporation. Using SF6 and NF3 as modifier gases, low limits of quantification (LOQs) were achieved for the 19 well released trace elements (typical ≤0.1 mg kg-1). Most elements (exceptions Ag, Mg, and Ni) could be calibrated by using aqueous calibration solutions without any sample pretreatment. For the trace determination of Se, Te, and Au, a further analytical method of ETV-ICP OES is described in the second part based on thermo-hydrogenation reactions by using a hydrogen/argon mixture as a modifier gas. The determination of Se and Te with very high analytical performance (LOQ < 0.1 mg kg-1) can either be carried out in a second analytical step succeeding the halogenation procedure, or the sub-sample is directly treated with H2 without previous halogenation procedure whereby the sub-sample can either be partially or totally evaporated. In this case some other analytes (Ag, Au, As, Bi, Cd, Fe, Mg, Ni, Pb, Sb, Sn, and Zn) can additionally be quantified simultaneously with Se and Te. KW - Pure Cu material KW - Electrothermal vaporization KW - Optical-emission spectrometry KW - Plasma-mass-spectrometry KW - Atomic-absorption spectrophotometry KW - Graphite-furnace AAS KW - Pure copper KW - Spectrochemical analysis KW - Precise determination KW - Sample introduction KW - Silicon-carbide PY - 2016 DO - https://doi.org/10.1039/C5JA00240K SN - 0267-9477 SN - 1364-5544 VL - 31 IS - 3 SP - 642 EP - 657 PB - Royal Society of Chemistry CY - London AN - OPUS4-35133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -