TY - CONF A1 - Schumacher, David A1 - Meyendorf, N. A1 - Hakim, I. A1 - Ewert, Uwe ED - Chimenti, D. E. ED - Bond, L. J. T1 - Defect recognition in CFRP components using various NDT methods within a smart manufacturing process N2 - The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah, USA DA - 16.07.2017 KW - Carbon fiber reinforced polymers KW - Non-destructive testing KW - Smart industry (4.0) KW - Ultrasound KW - Laminography KW - Serial sectioning KW - Computed tompgraphy PY - 2018 SN - 978-0-7354-1644-4 U6 - https://doi.org/10.1063/1.5031521 SN - 0094-243X VL - 1949 SP - UNSP 020024, 1 EP - 11 PB - AIP Publishing AN - OPUS4-44773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hakim, I. A1 - Schumacher, David A1 - Sundar, V. A1 - Donaldson, S. A1 - Creuz, A. A1 - Schneider, R. A1 - Keller, J. A1 - Browning, C. A1 - May, D. A1 - Abo Ras, M. A1 - Meyendorf, N. ED - Chimenti, D. E. ED - Bond, L. J. T1 - Volume imaging NDE and serial sectioning of carbon fiber composites N2 - A composite material is a combination of two or more materials with very different mechanical, thermal and electrical properties. The various forms of composite materials, due to their high material properties, are widely used as structural materials in the aviation, space, marine, automobile, and sports industries. However, some defects like voids, delamination, or inhomogeneous fiber distribution that form during the fabricating processes of composites can seriously affect the mechanical properties of the composite material. In this study, several imaging NDE techniques such as: thermography, high frequency eddy current, ultrasonic, x-ray radiography, x-ray laminography, and high resolution x-ray CT were conducted to characterize the microstructure of carbon fiber composites. Then, a 3D analysis was implemented by the destructive technique of serial sectioning for the same sample tested by the NDE methods. To better analyze the results of this work and extract a clear volume image for all features and defects contained in the composite material, an intensive comparison was conducted among hundreds of 3D-NDE and multi serial sections’ scan images showing the microstructure variation. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah, USA DA - 16.07.2017 KW - Carbon fiber reinforced polymers KW - Non-destructive testing KW - Thermography KW - Eddy current KW - Ultrasound KW - X-ray radiography KW - X-ray laminography KW - X-ray computed tomography KW - Serial sectioning PY - 2018 U6 - https://doi.org/10.1063/1.5031590 VL - 1949 SP - 120003-1 EP - 120003-10 PB - AIP Publishing AN - OPUS4-45173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hakim, I. A1 - Laquai, René A1 - Schumacher, David A1 - Müller, Bernd R. A1 - Graja, P. A1 - Meyendorf, N. A1 - Donaldson, S. T1 - The Effect of Manufacturing Conditions on Discontinuity Population and Fatigue Fracture Behavior in Carbon/Epoxy Composites N2 - Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Iscontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified throughthickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite’s internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids. T2 - QNDE 2016 CY - Atlanta, GA, USA DA - 17.07.2016 KW - Carbon Fber Reinforced Polymers KW - Nondestructive Testing KW - X-ray Imaging KW - Ultrasound KW - Thermography PY - 2017 SN - 978-0-7354-1474-7 U6 - https://doi.org/10.1063/1.4974661 SN - 0094-243X N1 - Geburtsname von Schumacher, David: Walter, D. - Birth name of Schumacher, David: Walter, D. VL - 1806 SP - UNSP 090017, 1 EP - 11 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-39716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -