TY - JOUR A1 - Ahmed, A. A. A. A1 - Alegret, N. A1 - Almeida, B. A1 - Alvarez-Puebla, R. A1 - Andrews, A. M. A1 - Ballerini, L. A1 - Barrios-Capuchino, J. J. A1 - Becker, C. A1 - Blick, R. H. A1 - Bonakdar, S. A1 - Chakraborty, I. A1 - Chen, X. A1 - Cheon, J. A1 - Chilla, G. A1 - Conceicao, A. L. C. A1 - Delehanty, J. A1 - Dulle, M. A1 - Efros, A. L. A1 - Epple, M. A1 - Fedyk, M. A1 - Feliu, N. A1 - Feng, M. A1 - Fernandez-Chacon, R. A1 - Fernandez-Cuesta, I. A1 - Fertig, N. A1 - Förster, S. A1 - Garrido, J. A. A1 - George, M. A1 - Guse, A. H. A1 - Hampp, N. A1 - Harberts, J. A1 - Han, J. A1 - Heekeren, H. R. A1 - Hofmann, U. G. A1 - Holzapfel, M. A1 - Hosseinkazemi, H. A1 - Huang, Y. A1 - Huber, P. A1 - Hyeon, T. A1 - Ingebrandt, S. A1 - Ienca, M. A1 - Iske, A. A1 - Kang, Y. A1 - Kasieczka, G. A1 - Kim, D.-H. A1 - Kostarelos, K. A1 - Lee, J.-H. A1 - Lin, K.-W. A1 - Liu, S. A1 - Liu, X. A1 - Liu, Y. A1 - Lohr, C. A1 - Mailänder, V. A1 - Maffongelli, L. A1 - Megahed, S. A1 - Mews, A. A1 - Mutas, M. A1 - Nack, L. A1 - Nakatsuka, N. A1 - Oertner, T. G. A1 - Offenhäusser, A. A1 - Oheim, M. A1 - Otange, B. A1 - Otto, F. A1 - Patrono, E. A1 - Peng, B. A1 - Picchiotti, A. A1 - Pierini, F. A1 - Pötter-Nerger, M. A1 - Pozzi, M. A1 - Pralle, A. A1 - Prato, M. A1 - Qi, B. A1 - Ramos-Cabrer, P. A1 - Resch-Genger, Ute A1 - Ritter, N. A1 - Rittner, M. A1 - Roy, S. A1 - Santoro, F. A1 - Schuck, N. W. A1 - Schulz, F. A1 - Seker, E. A1 - Skiba, M. A1 - Sosniok, M. A1 - Stephan, H. A1 - Wang, R. A1 - Wang, T. A1 - Wegner, Karl David A1 - Weiss, P. S. A1 - Xu, M. A1 - Yang, C. A1 - Zargarin, S. S. A1 - Zeng, Y. A1 - Zhou, Y. A1 - Zhu, D. A1 - Zierold, R. A1 - Parak, W. J. T1 - Interfacing with the Brain: How Nanotechnology Can Contribute N2 - Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain−machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain−machine interfaces and look forward in discussing perspectives and limitations based on the authors’ expertise across a range of complementary disciplines from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary. KW - Nanoneuro interface KW - Brain-on-a-chip KW - Nanostructured interface KW - Electrode arrays KW - Neuro-implants KW - Advanced nanomaterials KW - Quality assurance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634893 DO - https://doi.org/10.1021/acsnano.4c10525 SN - 1936-086X VL - 19 IS - 11 SP - 10630 EP - 10717 PB - ACS Publications AN - OPUS4-63489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anker, Andy S. A1 - Aspuru-Guzik, Alán A1 - Ben Mahmoud, Chiheb A1 - Bennett, Sophie A1 - Briling, Ksenia R. A1 - Changiarath, Arya A1 - Chong, Sanggyu A1 - Collins, Christopher M. A1 - Cooper, Andrew I. A1 - Crusius, Daniel A1 - Darmawan, Kevion K. A1 - Das, Basita A1 - David, Nicholas A1 - Day, Graeme M. A1 - Deringer, Volker L. A1 - Duarte, Fernanda A1 - Eardley-Brunt, Annabel A1 - Evans, Matthew L. A1 - Evans, Rob A1 - Fairlamb, Ian A1 - Franklin, Barnabas A. A1 - Frey, Jeremy A1 - Ganose, Alex M. A1 - Goulding, Mark A1 - Hafizi, Roohollah A1 - Hakkennes, Matthijs A1 - Hickey, Niamh A1 - James, Gillian A1 - Jelfs, Kim E. A1 - Kalikadien, Adarsh V. A1 - Kapil, Venkat A1 - Koczor-Benda, Zsuzsanna A1 - Krammer, Ferdinand A1 - Kulik, Heather J. A1 - Kumar, Vishank A1 - Kuttner, Christian A1 - Lam, Erwin A1 - Lou, Yuchen A1 - Mante, Eltjo A1 - Martin, Jennie A1 - Mroz, Austin M. A1 - Nematiaram, Tahereh A1 - Pare, Charles W. P. A1 - Patra, Sarbani A1 - Proudfoot, James A1 - Ruscic, Branko A1 - Ryder, Matthew R. A1 - Sakaushi, Ken A1 - Saßmannshausen, Jörg A1 - Savoie, Brett M. A1 - Schneider, Nadine A1 - Schwaller, Philippe A1 - Skjelstad, Bastian Bjerkem A1 - Sun, Wenhao A1 - Szczypiński, Filip T. A1 - Torrisi, Steven A1 - Ueltzen, Katharina A1 - Vishnoi, Shubham A1 - Walsh, Aron A1 - Wang, Xinwei A1 - Wilson, Chloe A1 - Wu, Ruiqi A1 - Zeitler, Jakob T1 - Discovering structure–property correlations: General discussion N2 - This article is a discussion of the paper "Web-BO: Towards increased accessibility of Bayesian optimisation (BO) for chemistry" by Austin M. Mroz, Piotr N. Toka, Ehecatl Antonio del Río Chanona and Kim E. Jelfs (Faraday discussions, 2025, 256, 221-234). KW - Materials design KW - Machine learning KW - Automation KW - Materials discovery PY - 2025 DO - https://doi.org/10.1039/d4fd90062f SN - 1359-6640 SN - 1364-5498 VL - 256 IS - Themed collection: Data-driven discovery in the chemical sciences SP - 373 EP - 412 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-62208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Albornoz, Ricardo Valencia A1 - Antypov, Dmytro A1 - Blanke, Gerd A1 - Borges, Itamar A1 - Marulanda Bran, Andres A1 - Cheung, Joshua A1 - Collins, Christopher M. A1 - David, Nicholas A1 - Day, Graeme M. A1 - Deringer, Volker L. A1 - Draxl, Claudia A1 - Eardley-Brunt, Annabel A1 - Evans, Matthew L. A1 - Fairlamb, Ian A1 - Fieseler, Kate A1 - Franklin, Barnabas A. A1 - George, Janine A1 - Grundy, Joanna A1 - Johal, Jay A1 - Kalikadien, Adarsh V. A1 - Kapil, Venkat A1 - Kotopanov, Lyubomir A1 - Kumar, Vishank A1 - Kuttner, Christian A1 - Lederbauer, Magdalena A1 - Ojeda-Porras, Andrea Carolina A1 - Pang, Jiayun A1 - Parkes, Michael A1 - Pemberton, Miles A1 - Ruscic, Branko A1 - Ryder, Matthew R. A1 - Sakaushi, Ken A1 - Saleh, Gabriele A1 - Savoie, Brett M. A1 - Schwaller, Philippe A1 - Skjelstad, Bastian Bjerkem A1 - Sun, Wenhao A1 - Taniguchi, Takuya A1 - Taylor, Christopher R. A1 - Torrisi, Steven A1 - Vishnoi, Shubham A1 - Walsh, Aron A1 - Wu, Ruiqi T1 - Discovering trends in big data: General discussion N2 - This article is a discussion of the paper "Specialising and analysing instruction-tuned and byte-level language models for organic reaction prediction" by Jiayun Pang and Ivan Vulić (Faraday discussions, 2025, 256, 413-433). KW - Automation KW - Big data KW - Machine learning KW - Materials design KW - Chemically complex materials PY - 2025 DO - https://doi.org/10.1039/D4FD90063D SN - 1359-6640 SN - 1364-5498 VL - 256 IS - Themed collection: Data-driven discovery in the chemical sciences SP - 520 EP - 550 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-62652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anker, Andy S. A1 - Aspuru-Guzik, Alán A1 - Bechtel, Tim A1 - Bigi, Filippo A1 - Briling, Ksenia R. A1 - Das, Basita A1 - David, Nicholas A1 - Day, Graeme M. A1 - Deringer, Volker L. A1 - Dyer, Matthew A1 - Eardley-Brunt, Annabel A1 - Evans, Matthew L. A1 - Evans, Rob A1 - Franklin, Barnabas A. A1 - Ganose, Alex M. A1 - George, Janine A1 - Goulding, Mark A1 - Hickey, Niamh A1 - James, Gillian A1 - Kalikadien, Adarsh V. A1 - Kapil, Venkat A1 - Kulik, Heather J. A1 - Kumar, Vishank A1 - Kuttner, Christian A1 - Lam, Erwin A1 - Lederbauer, Magdalena A1 - Lou, Yuchen A1 - Martin, Jennie A1 - Marulanda Bran, Andres A1 - Mathea, Miriam A1 - Pickard, Chris J. A1 - Ruscic, Branko A1 - Ryder, Matthew R. A1 - Sabanza Gil, Victor A1 - Schwaller, Philippe A1 - Segler, Marwin H. S. A1 - Sun, Wenhao A1 - Tanovic, Sara A1 - Treyde, Wojtek A1 - Walsh, Aron A1 - Wu, Ruiqi T1 - Discovering synthesis targets: General discussion N2 - This article is a discussion of the paper "Analysis of uncertainty of neural fingerprint-based models" by Christian W. Feldmann, Jochen Sieg and Miriam Mathea (Faraday discussions, 2025, DOI: 10.1039/D4FD00095A). KW - Automation KW - Materials acceleration platforms KW - Machine learning KW - Materials design KW - Materials discovery KW - Density functional theory KW - Ab initio PY - 2025 DO - https://doi.org/10.1039/D4FD90064B SN - 1359-6640 SN - 1364-5498 VL - 256 IS - Themed collection: Data-driven discovery in the chemical sciences SP - 639 EP - 663 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-62317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batatia, Ilyes A1 - Benner, Philipp A1 - Chiang, Yuan A1 - Elena, Alin M. A1 - Kovács, Dávid P. A1 - Riebesell, Janosh A1 - Advincula, Xavier R. A1 - Asta, Mark A1 - Avaylon, Matthew A1 - Baldwin, William J. A1 - Berger, Fabian A1 - Bernstein, Noam A1 - Bhowmik, Arghya A1 - Bigi, Filippo A1 - Blau, Samuel M. A1 - Cărare, Vlad A1 - Ceriotti, Michele A1 - Chong, Sanggyu A1 - Darby, James P. A1 - De, Sandip A1 - Della Pia, Flaviano A1 - Deringer, Volker L. A1 - Elijošius, Rokas A1 - El-Machachi, Zakariya A1 - Fako, Edvin A1 - Falcioni, Fabio A1 - Ferrari, Andrea C. A1 - Gardner, John L. A. A1 - Gawkowski, Mikołaj J. A1 - Genreith-Schriever, Annalena A1 - George, Janine A1 - Goodall, Rhys E. A. A1 - Grandel, Jonas A1 - Grey, Clare P. A1 - Grigorev, Petr A1 - Han, Shuang A1 - Handley, Will A1 - Heenen, Hendrik H. A1 - Hermansson, Kersti A1 - Ho, Cheuk Hin A1 - Hofmann, Stephan A1 - Holm, Christian A1 - Jaafar, Jad A1 - Jakob, Konstantin S. A1 - Jung, Hyunwook A1 - Kapil, Venkat A1 - Kaplan, Aaron D. A1 - Karimitari, Nima A1 - Naik, Aakash A. A1 - Csányi, Gábor T1 - A foundation model for atomistic materials chemistry N2 - Atomistic simulations of matter, especially those that leverage first-principles (ab initio) electronic structure theory, provide a microscopic view of the world, underpinning much of our understanding of chemistry and materials science. Over the last decade or so, machine-learned force fields have transformed atomistic modeling by enabling simulations of ab initio quality over unprecedented time and length scales. However, early machine-learning (ML) force fields have largely been limited by (i) the substantial computational and human effort required to develop and validate potentials for each particular system of interest and (ii) a general lack of transferability from one chemical system to the next. Here, we show that it is possible to create a general-purpose atomistic ML model, trained on a public dataset of moderate size, that is capable of running stable molecular dynamics for a wide range of molecules and materials. We demonstrate the power of the MACE-MP-0 model—and its qualitative and at times quantitative accuracy—on a diverse set of problems in the physical sciences, including properties of solids, liquids, gases, chemical reactions, interfaces, and even the dynamics of a small protein. The model can be applied out of the box as a starting or “foundation” model for any atomistic system of interest and, when desired, can be fine-tuned on just a handful of application-specific data points to reach ab initio accuracy. Establishing that a stable force-field model can cover almost all materials changes atomistic modeling in a fundamental way: experienced users obtain reliable results much faster, and beginners face a lower barrier to entry. Foundation models thus represent a step toward democratizing the revolution in atomic-scale modeling that has been brought about by ML force fields. KW - Materials Design KW - Thermal Conducitivity KW - Nanoparticles KW - Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647829 DO - https://doi.org/10.1063/5.0297006 SN - 0021-9606 VL - 163 IS - 18 SP - 1 EP - 89 PB - AIP Publishing AN - OPUS4-64782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Moros, M. A1 - Castillo-Michel, H. A1 - Materra, L. A1 - Onorato, G. A1 - Ling, W. L. A1 - Reiss, P. A1 - Tortiglione, C. T1 - In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X‑Ray Microspectroscopy N2 - Many attempts have been made to synthesize cadmium-free quantum dots (QDs), using nontoxic materials, while preserving their unique optical properties. Despite impressive advances, gaps in knowledge of their intracellular fate, persistence, and excretion from the targeted cell or organism still exist, precluding clinical applications. In this study, we used a simple model organism (Hydra vulgaris) presenting a tissue grade of organization to determine the biodistribution of indium phosphide (InP)-based QDs by X-ray fluorescence imaging. By complementing elemental imaging with In L-edge X-ray absorption near edge structure, unique information on in situ chemical speciation was obtained. Unexpectedly, spectral profiles indicated the appearance of In−O species within the first hour post-treatment, suggesting a fast degradation of the InP QD core in vivo, induced mainly by carboxylate groups. Moreover, no significant difference in the behavior of bare core QDs and QDs capped with an inorganic Zn(Se,S) gradient shell was observed. The results paralleled those achieved by treating animals with an equivalent dose of indium salts, confirming the preferred bonding type of In3+ ions in Hydra tissues. In conclusion, by focusing on the chemical identity of indium along a 48 h long journey of QDs in Hydra, we describe a fast degradation process, in the absence of evident toxicity. These data pave the way to new paradigms to be considered in the biocompatibility assessment of QD-based biomedical applications, with greater emphasis on the dynamics of in vivo biotransformations, and suggest strategies to drive the design of future applied materials for nanotechnology-based diagnosis and therapeutics. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - X-ray microspectroscopy PY - 2019 DO - https://doi.org/10.1021/acsami.9b15433 VL - 11 IS - 39 SP - 35630 EP - 35640 PB - ACS Publications AN - OPUS4-49425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Godard, A. A1 - Kalot, G. A1 - Privat, M. A1 - Bendellaa, M. A1 - Busser, B. A1 - Wegner, Karl David A1 - Denat, F. A1 - Le Guevel, X. A1 - Coll, J.-L. A1 - Paul, C. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - NIR-II Aza-BODIPY Dyes Bioconjugated to Monoclonal Antibody Trastuzumab for Selective Imaging of HER2-Positive Ovarian Cancer N2 - Using fluorescence-guided surgery (FGS) to cytoreductive surgery helps achieving complete resection of microscopic ovarian tumors. The use of visible and NIR-I fluorophores has led to beneficial results in clinical trials; however, involving NIR-II dyes seems to outperform those benefits due to the deeper tissue imaging and higher signal/noise ratio attained within the NIR-II optical window. In this context, we developed NIR-II emitting dyes targeting human epidermal growth factor receptor 2 (HER2)-positive ovarian tumors by coupling water-soluble NIR-II aza-BODIPY dyes to the FDA-approved anti-HER2 antibody, namely, trastuzumab. These bioconjugated NIR-II-emitting dyes displayed a prolonged stability in serum and a maintained affinity toward HER2 in vitro. We obtained selective targeting of HER2 positive tumors (SKOV-3) in vivo, with a favorable tumor accumulation. We demonstrated the fluorescence properties and the specific HER2 binding of the bioconjugated dyes in vivo and thus their potential for NIR-II FGS in the cancer setting. KW - NIR-II KW - Fluorescent dye KW - In vivo imaging KW - Ovarian cancer KW - Antibody conjuagtes KW - Bioimaging PY - 2023 DO - https://doi.org/10.1021/acs.jmedchem.3c00100 SN - 0022-2623 VL - 66 IS - 7 SP - 5185 EP - 5195 PB - ACS Publications AN - OPUS4-57293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Godard, A. A1 - Kalot, G. A1 - Pliquett, J. A1 - Busser, B. A1 - Le Guével, X. A1 - Wegner, Karl David A1 - Resch-Genger, Ute A1 - Russelin, Y. A1 - Coll, J.-L. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast In Vivo NIR-II Imaging N2 - A simple NIR-II emitting water-soluble system has been developed and applied in vitro and in vivo. In vitro, the fluorophore quickly accumulated in 2D and 3D cell cultures and rapidly reached the tumor in rodents, showing high NIR-II contrast for up to 1 week. This very efficient probe possesses all the qualities necessary for translation to the clinic as well as for the development of NIR-II emitting materials. KW - Aza-BODIPY KW - NIR-II Imaging KW - In vivo imaging KW - organic dyes KW - SWIR KW - Cancer KW - Fluorescence PY - 2020 DO - https://doi.org/10.1021/acs.bioconjchem.0c00175 VL - 31 IS - 4 SP - 1088 EP - 1092 PB - ACS Publications AN - OPUS4-50695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalot, G. A1 - Godard, A. A1 - Busser, B. A1 - Pliquett, J. A1 - Broekgaarden, M. A1 - Motto-Ros, V. A1 - Wegner, Karl David A1 - Resch-Genger, Ute A1 - Köster, U. A1 - Denat, F. A1 - Coll, J.-L. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications N2 - Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle Emission that inducing extensive damage on a very localized level (<10 um). To be effcient, a suffcient amount of 10B should accumulate in the tumor area while being almost cleared from the normal surroundings. A water-soluble aza-boron-dipyrromethene dyes (BODIPY) fluorophore was reported to strongly accumulate in the tumor area with high and BNCT compatible Tumor/Healthy Tissue ratios. The clinically used 10B-BSH (sodium borocaptate) was coupled to the water-soluble aza-BODIPY platform for enhanced 10B-BSH tumor vectorization. We demonstrated a strong uptake of the compound in tumor cells and determined its biodistribution in mice-bearing tumors. A model of chorioallantoic membrane-bearing glioblastoma xenograft was developed to evidence the BNCT potential of such compound, by subjecting it to slow neutrons. We demonstrated the Tumor accumulation of the compound in real-time using optical imaging and ex vivo using elemental imaging based on laser-induced breakdown spectroscopy. The tumor growth was significantly reduced as compared to BNCT with 10B-BSH. Altogether, the fluorescent aza-BODIPY/10B-BSH compound is able to vectorize and image the 10B-BSH in the tumor area, increasing its theranostic potential for effcient approach of BNCT. KW - Aza-BODIPY KW - SWIR KW - NIR-I KW - Theranostic KW - Boron compound KW - Optical imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512280 DO - https://doi.org/10.3390/cells9091953 VL - 9 IS - 9 SP - 1953 PB - MDPI AN - OPUS4-51228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhuckory, S. A1 - Wegner, Karl David A1 - Qiu, X. A1 - Wu, Y.T. A1 - Jennings, T. L. A1 - Incamps, A. A1 - Hildebrandt, N. T1 - Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET N2 - Time-gated Förster resonance energy transfer (TG-FRET) between Tb complexes and luminescent semiconductor quantum dots (QDs) provides highly advantageous photophysical properties for multiplexed biosensing. Multiplexed Tb-to-QD FRET immunoassays possess a large potential for in vitro diagnostics, but their performance is often insufficient for their application under clinical conditions. Here, we developed a homogeneous TG-FRET immunoassay for the quantification of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and prostatespecific antigen (PSA) from a single serum sample by multiplexed Tb-to-QD FRET. Tb–IgG antibody donor conjugates were combined with compact QD-F(ab’)2 antibody acceptor conjugates with three different QDs emitting at 605, 650, and 705 nm. Upon antibody–antigen–antibody Sandwich complex formation, the QD acceptors were sensitized via FRET from Tb, and the FRET ratios of QD and Tb TG luminescence intensities increased specifically with increasing antigen concentrations. Although limits of detection (LoDs: 3.6 ng/mL CEA, 3.5 ng/mL NSE, and 0.3 ng/mL PSA) for the triplexed assay were slightly higher compared to the single-antigen assays, they were still in a clinically relevant concentration range and could be quantified in 50 μL serum samples on a B·R·A·H·M·S KRYPTOR Compact PLUS clinical immunoassay plate reader. The simultaneous quantification of CEA, NSE, and PSA at different concentrations from the same serum sample demonstrated actual multiplexing Tb-to-QD FRET immunoassays and the potential of this technology for translation into clinical diagnostics. KW - Lanthanides KW - Nanoparticles KW - Biosensing KW - Multiplexing KW - FRET KW - Fluorescence KW - PSA KW - NSE KW - CEA PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512290 DO - https://doi.org/10.3390/molecules25163679 VL - 25 IS - 16 SP - 3679 PB - MDPI AN - OPUS4-51229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kang, Y. A1 - Nack, L. M. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types N2 - Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Fluorescence KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543476 DO - https://doi.org/10.1007/s40828-021-00159-6 SN - 2199-3793 VL - 8 IS - 1 SP - 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-54347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kang, Y. A1 - Nack, L. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Correction to: Quantitative considerations about the size dependency for cellular entry and excretion of colloidal nanoparticles for different cell types N2 - We regret to inform that the labels "NPs which remain in endosomes/lysosomes" and "exocytosed NPs" had been erroneously swapped in the sketch on the right side in Figure 2. The corrected Fig. 2 is displayed below. WJP apologizes for this error. PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554519 DO - https://doi.org/10.1007/s40828-022-00168-z VL - 8 IS - 17 SP - 1 EP - 2 PB - Springer CY - Berlin AN - OPUS4-55451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chazeau, E. A1 - Fabre, C. A1 - Privat, M. A1 - Godard, A. A1 - Racoeur, C. A1 - Bodio, E. A1 - Busser, B. A1 - Wegner, Karl David A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates N2 - The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent. KW - NIR-II KW - In vivo imaging KW - Fluorescence KW - Spectroscopy KW - Antibody conjugates PY - 2024 DO - https://doi.org/10.1021/acs.jmedchem.3c02139 SN - 1520-4804 VL - 67 IS - 5 SP - 3679 EP - 3691 PB - ACS Publications CY - Washington, DC AN - OPUS4-59607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos, C.I.L. A1 - Machado, W.S. A1 - Wegner, Karl David A1 - Gontijo, L.A.P. A1 - Bettini, J. A1 - Schiavon, M.A. A1 - Reiss, P. A1 - Aldakov, D. T1 - Hydrothermal Synthesis of Aqueous-Soluble Copper Indium Sulfide Nanocrystals and Their Use in Quantum Dot Sensitized Solar Cells N2 - facile hydrothermal method to synthesize water-soluble copper indium sulfide (CIS) nanocrystals (NCs) at 150 degrees C is presented. The obtained samples exhibited three distinct photoluminescence peaks in the red, green and blue spectral regions, corresponding to three size fractions, which could be separated by means of size-selective precipitation. While the red and green emitting fractions consist of 4.5 and 2.5 nm CIS NCs, the blue fraction was identified as in situ formed carbon nanodots showing excitation wavelength dependent emission. When used as light absorbers in quantum dot sensitized solar cells, the individual green and red fractions yielded power conversion efficiencies of 2.9% and 2.6%, respectively. With the unfractionated samples, the efficiency values approaching 5% were obtained. This improvement was mainly due to a significantly enhanced photocurrent arising from complementary panchromatic absorption. KW - Aqueous quantum dot KW - Solar cells KW - CUINS2 nanocrystals KW - Colloidal semiconductor nanocrystals PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517983 DO - https://doi.org/10.3390/nano10071252 VL - 10 IS - 7 SP - 1252 PB - MDPI AN - OPUS4-51798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hakme, C. A1 - Stevenson, I. A1 - David, L. A1 - Boiteux, G. A1 - Seytre, G. A1 - Schönhals, Andreas T1 - Uniaxially stretched poly(ethylene naphthalene 2,6-dicarboxylate) films studied by broadband dielectric spectroscopy N2 - The thermal behaviors of amorphous PEN films uniaxially stretched above and below Tg have been characterized by Temperature Modulated DSC. When drawing is performed above Tg, the degree of crystallinity and the glass transition temperature Tg increase with increasing drawing ratio. PEN samples stretched below Tg are more crystalline than when stretched above Tg. Moreover the cold crystallization phenomenon disappears with drawing as a result of the mechanically induced crystallization. Broadband dielectric spectroscopy has also been used to study the influence of the orientation on the molecular mobility of PEN to gain insight into the microscopic origin of the relaxation processes in the transverse direction i.e. when the electric field is perpendicular to the stretching direction. Dielectric relaxation phenomena are thus discussed as a function of the microstructure (orientation, crystallinity). The α-relaxation dynamics associated with the glass transition are largely slowed down by the drawing process and the relaxation strength decreases. This can be related to a transformation of the amorphous phase into (i) crystalline, (ii) rigid amorphous fraction (RAF) and/or constrained amorphous phase with lower molecular mobility due to the crystallization induced by the orientation process. In contrast, the dynamics of the ß*-relaxation are apparently increased and the activation energy for the uniaxially stretched samples decreases compared to the unstretched isotropic amorphous state. If the ß*-relaxation is assigned to the presence of naphthalene aggregates, this leads to the conclusion that stretching is structurally altering the naphthalene aggregates (creation of defective aggregates that induces a higher molecular mobility) or orientation is selecting the faster motions active for ß*. The ß-relaxation which corresponds to more local motions implying reorientation of the ester groups seems to be broad and composed of two components as in the case of PET: the ß1- and ß2-relaxations. While the high frequency ß1-component relaxation strength is increasing significantly with the deformation below Tg, that of the ß2-process is more related to the presence of water. KW - Poly(ethylene 2,6-naphthalene-dicarboxylate) KW - Dielectric Relaxation Spectroscopy (DRS) KW - TMDSC PY - 2005 DO - https://doi.org/10.1016/j.jnoncrysol.2005.05.039 SN - 0022-3093 VL - 351 IS - 33-36 SP - 2742 EP - 2752 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-10855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holde, David A1 - Ubbelohde, L. A1 - Marcusson, J. T1 - Über die natürlich vorkommende Heptadecylsäure PY - 1905 VL - 23 IS - 1 SP - 36 EP - 44 PB - Springer CY - Berlin AN - OPUS4-13375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ewert, Uwe A1 - Redmer, Benrhard A1 - Schumacher, David A1 - Thiessenhusen, Kai-Uwe A1 - Bellon, Carsten A1 - Nicholson, P. I. A1 - Clarke, A. L. A1 - Finke-Härkönen, K.-P. T1 - X-ray tomographic in-service inspection of girth welds – the european project tomoweld N2 - The new standard ‘ISO 17636-2:2013: Non-destructive testing of welds — Radiographic testing — Part 2: X- and gamma-ray techniques with digital detectors’, defines the practice for radiographic inspection of welded pipes for manufacturing and in-service inspection. It is applied in Europe for inspections of pipe welds in nuclear power plants as well as in chemical plants and allows a faster inspection with digital detector arrays (DDA) than with film. Nevertheless, it does not allow the evaluation of the depth and shape of volumetric and planar indications. In 2001 a planar tomography scanner, TomoCAR, was introduced for mechanized radiographic testing (RT) inspection and non-destructive measurement of cross sections. The project TomoWELD is based on a new concept of the scan geometry, an enhanced GPU based reconstruction, and the application of a new generation of photon counting DDAs based on CdTe crystal CMOS hybrids. The new detector permits the selection of energy thresholds to obtain an optimum energy range and reduction of the influence of scattered radiation. The concept and first measurements are presented. Flaw depth and shape of volumetric and planar irregularities can be determined. T2 - QNDE 2014 CY - Boise, Idaho, USA DA - 20.07.2014 KW - X-ray imaging KW - Tomography KW - Engineering inspection KW - Radiography KW - Welded joints KW - Chemical plants PY - 2015 SN - 978-0-7354-1292-7 DO - https://doi.org/10.1063/1.4914650 SN - 0094-243X N1 - Geburtsname von Schumacher, David: Walter, D. - Birth name of Schumacher, David: Walter, D. VL - 1650 SP - 525 EP - 533 PB - American Institute of Physics AN - OPUS4-36581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chazeau, E. A1 - Pipier, A. A1 - Wegner, Karl David A1 - Ghiringhelli, F. A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - NIR-II aza-BODIPY Platform for the Development of a Fluorescent Antibody Drug Conjugate N2 - Real-time imaging of antibody-drug conjugates (ADCs) offers valuable insights for assessing tumor targeting specificity, monitoring therapeutic efficacy, and detecting off-target accumulation that may cause adverse effects. To enable precise tracking, we developed a versatile fluorescent platform based on an NIR-II emitting aza-BODIPY dye, which can be site-specifically grafted onto an IgG1 antibody to generate well-defined fluorescent ADCs. As a proof of concept, we synthesized an HER2-targeting trastuzumab immunoconjugate bearing a NIR-II aza-BODIPY fluorophore. The cytotoxic monomethyl auristatin E (MMAE) payload was introduced in the final step, resulting in a trackable and homogeneous ADC suitable for both in vitro and in vivo investigations. The resulting Trastu-azaNIRII-MMAE selectively accumulated in HER2-positive subcutaneous tumors, significantly reducing the tumor growth. Using NIR-II optical imaging, a single injection of the NIR-II-ADC allowed for the detection of the conjugate over a period of more than one month, highlighting its potential for long-term tracking and therapeutic applications. KW - NIR-II KW - Fluorescence KW - Quality assurance KW - Antibody drug conjugate KW - In vivo imaging PY - 2025 DO - https://doi.org/10.1021/acs.jmedchem.4c02777 VL - 68 IS - 7 SP - 7232 EP - 7242 PB - ACS Publications AN - OPUS4-63025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosen, Andrew S. A1 - Gallant, Max A1 - George, Janine A1 - Riebesell, Janosh A1 - Sahasrabuddhe, Hrushikesh A1 - Shen, Jimmy-Xuan A1 - Wen, Mingjian A1 - Evans, Matthew L. A1 - Petretto, Guido A1 - Waroquiers, David A1 - Rignanese, Gian-Marco A1 - Persson, Kristin A. A1 - Jain, Anubhav A1 - Ganose, Alex M. T1 - Jobflow: Computational Workflows Made Simple N2 - We present Jobflow, a domain-agnostic Python package for writing computational workflows tailored for high-throughput computing applications. With its simple decorator-based approach, functions and class methods can be transformed into compute jobs that can be stitched together into complex workflows. Jobflow fully supports dynamic workflows where the full acyclic graph of compute jobs is not known until runtime, such as compute jobs that launch other jobs based on the results of previous steps in the workflow. The results of all Jobflow compute jobs can be easily stored in a variety of filesystem- and cloud-based databases without the data storage process being part of the underlying workflow logic itself. Jobflow has been intentionally designed to be fully independent of the choice of workflow manager used to dispatch the calculations on remote computing resources. At the time of writing, Jobflow workflows can be executed either locally or across distributed compute environments via an adapter to the FireWorks package, and Jobflow fully supports the integration of additional workflow execution adapters in the future. KW - Automation KW - Workflow KW - Computational Materials Science KW - Computations KW - Software PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593104 DO - https://doi.org/10.21105/joss.05995 VL - 9 IS - 93 SP - 1 EP - 7 PB - The Open Journal AN - OPUS4-59310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Dahshan, O. A1 - Deniaud, A. A1 - Ling, W. L. A1 - Wegner, Karl David A1 - Proux, O. A1 - Veronesi, G. A1 - Reiss, P. T1 - Hydrothermal microwave synthesis of water soluble NIR-II emitting Ag2S quantum dots N2 - Hydrothermal-based synthetic methods of quantum dots allow for the exploration of reaction parameters normally inaccessible to typical aqueous-based batch reactions, such as elevated reaction temperatures (>100 °C) and reaction pressures above atmospheric pressure. Coupled with microwave heating, new instantaneously bio-compatible quantum dots (QDs) with enhanced opitcal properties can be yielded. As of today, aqueous-based synthetic methods often lag behind their organic analogues in terms of the photophysical properties of the QDs obtained and the ease of modulation of both the emission wavelength and crystallite size. Using a novel microwave-assisted hydrothermal approach, the synthesis of silver sulphide (Ag2S) QDs exhibiting NIR emission spanning the biological transparency windows via modulation of the reaction parameters has been developed. The intrinsic link between their optical and structural properties is explored via laboratory and synchrotron-based structural analysis techniques. Their toxicity towards a hepatic cell line was assessed, and related back to their structure and size. Overall this work aims to not only further develop the repertoire of synthetic methods for the synthesis of Ag2S QDs, but also paves the way for the development of safer QDs suitable for future clinical applications. KW - Quantum dots KW - Microwave synthesis KW - Quality assurance KW - NIR-II emission KW - PL quantum yield KW - Ag2S PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634825 DO - https://doi.org/10.1039/d5nr00052a SN - 2040-3372 VL - 17 IS - 24 SP - 14637 EP - 14646 PB - RSC AN - OPUS4-63482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Z. A1 - Wegner, Karl David A1 - Stiegler, L. M. S. A1 - Zhou, X. A1 - Rezvani, A. A1 - Odungat, A. S. A1 - Zubiri, B. A. A1 - Wu, M. A1 - Spiecker, E. A1 - Walter, J. A1 - Resch-Genger, Ute A1 - Segets, D. T1 - Optimizing the Shelling Process of InP/ZnS Quantum Dots Using a Single-Source Shell Precursor: Implications for Lighting and Display Applications N2 - InP/ZnS core/shell quantum dots (QDs), recognized as highly promising heavy-metal-free emitters, are increasingly being utilized in lighting and display applications. Their synthesis in a tubular flow reactor enables production in a highly efficient, scalable, and reproducible manner, particularly when combined with a single-source shell precursor, such as zinc diethyldithiocarbamate (Zn(S2CNEt2)2). However, the photoluminescence quantum yield (PLQY) of QDs synthesized with this route remains significantly lower compared with those synthesized in batch reactors involving multiple steps for the shell growth. Our study identifies the formation of absorbing, yet nonemissive ZnS nanoparticles during the ZnS shell formation process as a main contributing factor to this discrepancy. By varying the shelling conditions, especially the shelling reaction temperature and InP core concentration, we investigated the formation of pure ZnS nanoparticles and their impact on the optical properties, particularly PLQY, of the resultant InP/ZnS QDs through ultraviolet−visible (UV−vis) absorption, steady-state and time-resolved photoluminescence (PL) spectroscopy, scanning transmission electron microscopy (STEM), and analytical ultracentrifugation (AUC) measurements. Our results suggest that process conditions, such as lower shelling temperatures or reduced InP core concentrations (resulting in a lower external surface area), encourage homogeneous nucleation of ZnS. This reduces the availability of shell precursors necessary for effective passivation of the InP core surfaces, ultimately resulting in lower PLQYs. These findings explain the origin of persistently underperforming PLQY of InP/ZnS QDs synthesized from this synthesis route and suggest further optimization strategies to improve their emission for lighting and display applications. KW - Nano KW - Particle KW - Synthesis KW - InP KW - Shell KW - Fluorescence KW - Quantum yield KW - ZnS KW - Semiconductor KW - Quantum dot KW - Flow reactor KW - Method KW - AUC KW - Size KW - Automation KW - Sensor PY - 2024 DO - https://doi.org/10.1021/acsanm.4c05265 SN - 2574-0970 VL - 7 IS - 20 SP - 24262 EP - 24273 PB - ACS Publications AN - OPUS4-61518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stiegler, L. M. S. A1 - Wegner, Karl David A1 - Weigert, Florian A1 - Peukert, W. A1 - Resch-Genger, Ute A1 - Walter, J. T1 - Analysis of Giant-Shell CdSe/CdS Quantum Dots via Analytical Ultracentrifugation Combined with Spectrally Resolved Photoluminescence N2 - Knowledge of the structure–property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands. The MWE-AUC PL measurements are calibrated and validated with certified fluorescence standards. The spectrally corrected and size-dependent PL spectra of the g-QDs derived from a single MWE-AUC experiment are then analyzed and compared with the results of single-particle spectroscopic studies, yielding the PL spectra, decay kinetics, and blinking behavior of individual g-QDs. This study underlines the vast potential of MWE-AUC with in-line optical detection for the characterization of advanced nanomaterials with a complex structure. KW - Quantum dots KW - Analytical ultracentrifugation KW - Photoluminescence KW - Advanced nanomaterial characterization KW - Calibrated fluorescence measurements KW - Reference materials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624357 DO - https://doi.org/10.1002/smtd.202401700 SN - 2366-9608 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-62435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Kalot, G. A1 - Busser, B. A1 - Pliquett, J. A1 - Köster, U. A1 - Koll, J. C. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sacey, L. T1 - NIR aza-BODIPY: a new vector for boron neutron capture therapy (BNCT) N2 - Boron neutron capture therapy (BNCT) relies on the activation of 10B by thermal neutrons, which results in small highly energetic particle emission inducing cancer cells damage. However, in order to overcome the limits of the currently used BNCT agents, it is necessary to design new systems, which can specifically accumulate and deliver a sufficient amount of 10B in tumors. In this study, we designed a 10B-BSH-containing aza-BODIPY (aza-SWIR-BSH). It enabled the efficient vectorization of clinically used 10B-BSH to the tumor, resulting in higher therapeutic activity than the 10B-BSH alone. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Method KW - Quality assurance KW - BODIPY KW - Boron Neutron Capture Therapy (BNCT) KW - Medicine KW - Life sciences PY - 2021 AN - OPUS4-53731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soares, J. X. A1 - Wegner, Karl David A1 - Ribeiro, D. S. M. A1 - Melo, A. A1 - Häusler, I. A1 - Santos, J. L. M. A1 - Resch-Genger, Ute T1 - Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control N2 - In the blossoming field of Cd-free semiconductor quantum dots (QDs), ternary I–III–VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water, their high photoluminescence (PL) Quantum yields (QYs) in the red and near infrared (NIR) region, and their inherently low toxicity. Moreover, their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime. To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties, we assessed and modelled the synthesis of high-quality MPA-capped AgInS2/ZnS (AIS/ZnS) QDs. Systematically refined Parameters included reaction time, temperature, Ag:In ratio, S:In ratio, Zn:In ratio, MPA:In ratio, and pH using a design-of-experiment approach. Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters, maximum PL wavelength, QY, and PL lifetime as well as the elemental composition in terms of Ag:In:Zn ratio. With these experimental data-based models, MPA:In and Ag:In ratios and pH values were identified as the most important synthesis parameters for PL Control and an insight into the connection of these parameters could be gained. Subsequently, the experimental conditions to synthetize QDs with tunable emission and high QY were predicted. The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AIS/ZnS QDs with defined PL features. This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs. KW - Modelling KW - Nanoparticle KW - AIS KW - Semiconductor quantum dot KW - Design of experiment KW - Photoluminescence KW - Quantum yield KW - Surface chemistry KW - Synthesis KW - Lifetime PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510075 DO - https://doi.org/10.1007/s12274-020-2876-8 VL - 13 IS - 9 SP - 2438 EP - 2450 PB - Springer AN - OPUS4-51007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rosen, Andrew S. A1 - Gallant, Max A1 - George, Janine A1 - Riebesell, Janosh A1 - Sahasrabuddhe, Hrushikesh A1 - Shen, Jimmy-Xuan A1 - Wen, Mingjian A1 - Evans, Matthew L. A1 - Petretto, Guido A1 - Waroquiers, David A1 - Rignanese, Gian-Marco A1 - Persson, Kristin A. A1 - Jain, Anubhav A1 - Ganose, Alex M. T1 - Jobflow: Computational Workflows Made Simple N2 - Jobflow is a free, open-source library for writing and executing workflows. Complex workflows can be defined using simple python functions and executed locally or on arbitrary computing resources using the FireWorks workflow manager. Some features that distinguish jobflow are dynamic workflows, easy compositing and connecting of workflows, and the ability to store workflow outputs across multiple databases. KW - Automation KW - Workflows KW - Computational Materials Science PY - 2024 DO - https://doi.org/10.5281/zenodo.10466868 PB - Zenodo CY - Geneva AN - OPUS4-59313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Pouget, S. A1 - Ling, W. L. A1 - Carriere, M. A1 - Reiss, P. T1 - Gallium – a versatile element for tuning the photoluminescence properties of InP quantum dots N2 - With the goal to tune the emission properties of colloidal InP quantum dots, the incorporation of Ga was explored. Unexpectedly, depending on the nature of the gallium precursor, the photoluminescence shifted either to the red (gallium oleate) or to the blue (gallium acetylacetonate). In the first case, larger-sized InP/GaP core/shell nanocrystals were formed, while in the second case the formation of an InGaP alloy structure enabled the blue range of emission (475 nm) to be accessed. KW - Indium phosphide KW - Quantum dots KW - Gallium doping PY - 2019 DO - https://doi.org/10.1039/C8CC09740B VL - 55 IS - 11 SP - 1663 EP - 1666 PB - Royal Society of Chemistry AN - OPUS4-48306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tarantini, A. A1 - Wegner, Karl David A1 - Dussert, F. A1 - Sarret, G. A1 - Beal, D. A1 - Mattera, L. A1 - Lincheneau, C. A1 - Proux, O. A1 - Truffier-Boutry, D. A1 - Moriscot, C. A1 - Gallet, B. A1 - Jouneau, P.-H. A1 - Reiss, P. A1 - Carriere, M. T1 - Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation N2 - Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy. The fate and toxicity of seven different water-dispersible indium (In) based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their Surface was functionalized using either penicillamine or glutathione. In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant cytotoxic effects. Ageing led to dissociation of IneP and ZneS bonds, and to complexation of In Zn ions with carboxylate and/or phosphate moieties. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the necessity to preserve as much as possible the structural integrity of QDs, for instance by developing more robust shells, in order to ensure their safety for future applications. KW - Indium phosphide KW - Safe by design KW - Toxicity KW - EXAFS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483070 DO - https://doi.org/10.1016/j.impact.2019.100168 VL - 14 SP - 100168-1 EP - 100168-13 PB - Elsevier AN - OPUS4-48307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alam, F. A1 - Wegner, Karl David A1 - Pouget, S. A1 - Amidani, L. A1 - Kvashnina, K. A1 - Aldakov, D. A1 - Reiss, P. T1 - Eu2+: A suitable substituent for Pb2+ in CsPbX3 perovskite nanocrystals? N2 - Eu2+ is used to replace toxic Pb2+ in metal halide perovskite nanocrystals (NCs). The synthesis implies injection of cesium oleate into a solution of europium (II) bromide at an experimentally determined optimum temperature of 130 ○C and a reaction time of 60 s. Structural analysis indicates the formation of spherical CsEuBr3 nanoparticles with a mean size of 43 ± 7 nm. Using EuI2 instead of EuBr2 leads to the formation of 18-nm CsI nanoparticles, while EuCl2 does not show any reaction with cesium oleate forming 80-nm EuCl2 nanoparticles. The obtained CsEuBr3 NCs exhibit bright blue emission at 413 nm (FWHM 30 nm) with a room temperature photoluminescence quantum yield of 39%. The emission originates from the Laporte-allowed 4f7–4f65d1 transition of Eu2+ and shows a PL decay time of 263 ns. The long-term stability of the optical properties is observed, making inorganic lead-free CsEuBr3 NCs promising deep blue emitters for optoelectronics. KW - Perovskite KW - Lead-free KW - fluorescence KW - anion-exchange PY - 2019 DO - https://doi.org/10.1063/1.5126473 SN - 0021-9606 VL - 151 SP - 231101-1 EP - 231101-7 PB - AIP Publishing AN - OPUS4-50696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Linden, S. A1 - Liermann, K. A1 - Wegner, Karl David A1 - Charbonnière, L.J. A1 - Hildebrandt, N. T1 - Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging N2 - Luminescent lanthanide labels (LLLs) and semiconductor quantum dots (QDs) are two very special classes of (at least partially) inorganic fluorophores, which provide unique properties for Förster resonance energy transfer (FRET). FRET is an energy-transfer process between an excited donor fluorophore and a ground-state acceptor fluorophore in close proximity (approximately 1–20 nm), and therefore it is extremely well suited for biosensing applications in optical spectroscopy and microscopy. Within this cogent review, we will outline the main photophysical advantages of LLLs and QDs and their special properties for FRET. We will then focus on some recent applications from the FRET biosensing literature using LLLs as donors and QDs as donors and acceptors in combination with several other fluorophores. Recent examples of combining LLLs and QDs for spectral and temporal multiplexing from single-step to multistep FRET demonstrate the versatile and powerful biosensing capabilities of this unique FRET pair. As this review is published in the Forum on Imaging and Sensing, we will also present some new results of our groups concerning LLL-based time-gated cellular imaging with optically trifunctional antibodies and LLL-to-QD FRET-based homogeneous sandwich immunoassays for the detection of carcinoembryonic antigen. PY - 2014 DO - https://doi.org/10.1021/ic4017883 SN - 0020-1669 SN - 1520-510X VL - 53 IS - 4 SP - 1824 EP - 1838 PB - American Chemical Society CY - Washington, DC AN - OPUS4-31182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, Z. A1 - Musnier, B. A1 - Wegner, Karl David A1 - Henry, M. A1 - Chovelon, B. A1 - Desroches-Castan, A. A1 - Fertin, A. A1 - Resch-Genger, Ute A1 - Bailly, S. A1 - Coll, J.-L. A1 - Usson, Y, A1 - Josserand, V. A1 - Le Gúevel, X. T1 - High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters N2 - We synthesized a generation of water-soluble, atomically precise gold nanoclusters (Au NCs) with anisotropic Surface containing a short dithiol pegylated chain (AuMHA/TDT). The AuMHA/TDT exhibit a high brightness (QY ∼ 6%) in the shortwave infrared (SWIR) spectrum with a detection above 1250 nm. Furthermore, they show an extended half-life in blood (t1/2ß = 19.54 ± 0.05 h) and a very weak accumulation in organs. We also developed a non-invasive, whole-body vascular imaging system in the SWIR window with high-resolution, benefiting from a series of Monte Carlo image processing. The imaging process enabled to improve contrast by 1 order of magnitude and enhance the spatial Resolution by 59%. After systemic administration of these nanoprobes in mice, we can quantify vessel complexity in depth (>4 mm), allowing to detect very subtle vascular disorders non-invasively in bone morphogenetic protein 9 (Bmp9)-deficient mice. The combination of these anisotropic surface charged Au NCs plus an improved SWIR imaging device allows a precise mapping at high-resolution and an in depth understanding of the organization of the vascular network in live animals. KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Metal cluster KW - NIR KW - SWIR KW - Photophysics KW - Ligand KW - Size KW - Surface chemistry KW - Quantum yield KW - Mechanism KW - Lifetime KW - Decay kinetics PY - 2020 DO - https://doi.org/10.1021/acsnano.0c01174 VL - 14 IS - 4 SP - 4973 EP - 4981 PB - ACS Publication AN - OPUS4-50671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammad, W. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Ogayer, M. P. A1 - Coll, J.-L. A1 - Marin, R. A1 - Jaque Garcia, D. A1 - Resch-Genger, Ute A1 - Antoine, R. A1 - Le Guevel, X. T1 - Enhanced brightness of ultra-small gold nanoparticles in the second biological window through thiol ligand shell control N2 - Gold-based nanoparticles below 2 nm in size are promising as luminescent probes for in vivo bioimaging, owing to their brightness and rapid renal clearance. However, their use as contrast agents in the near-infrared II (NIR-II, 1000–1700 nm) range remains challenging due to their low photoluminescence (PL) quantum yield. To address this, PL enhancement can be achieved by either rigidifying the ligand-shell structure or increasing the size of the ligand shell. In this study, we synthesized ultra-small gold nanoparticles stabilized by co-ligands, namely monothiol and short dithiol molecules. By precisely controlling the amount of reducing agent used during particle preparation, we successfully modulated the physicochemical properties of the co-ligand shell, including its size, composition, and structure. Consequently, we achieved a remarkable 60-fold increase in the absorption cross-section at 990 nm while maintaining the small size of the 1.5-nm metal core. The analytical and optical characterization of our thiol-capped gold nanoparticles indicates that the ligand shell size is governed by the quantity of the reducing agent, which, in turn, impacts the balance between radiative and non-radiative processes, thereby influencing the PL quantum yield. KW - Gold nanocluster KW - NIR-II fluorescence KW - SWIR KW - Nanomaterial design KW - Calibrated fluorescence measurements PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588117 DO - https://doi.org/10.1039/D3TC03021K SN - 2050-7526 VL - 11 IS - 42 SP - 14714 EP - 14724 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musnier, B. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Jourdan, M. A1 - Häusler, I. A1 - Antoine, R. A1 - Coll, J.-L. A1 - Resch-Genger, Ute A1 - Le Guevel, X. T1 - High photoluminescence of shortwave infrared-emitting anisotropic surface charged gold nanoclusters N2 - Incorporating anisotropic surface charges on atomically precise gold nanoclusters (Au NCs) led to a strong absorption in the nearinfrared region and could enable the formation of self-assembled Au NCs xhibiting an intense absorption band at ∼1000 nm. This surface modification showed a striking enhancement of the photoluminescence in the Shortwave Infrared (SWIR) region with a quantum yield as high as 6.1% in water. KW - Gold nanoclusters KW - SWIR photoluminescence KW - Self-assembly PY - 2019 DO - https://doi.org/10.1039/C9NR04120F VL - 11 IS - 25 SP - 12092 EP - 12096 PB - Royal Society of Chemistry AN - OPUS4-48305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -