TY - JOUR A1 - Singh, Chandan A1 - Thiele, M. A1 - Dathe, A. A1 - Thamm, S. A1 - Henkel, T. A1 - Sumana, G. A1 - Fritzsche, W. A1 - Czáki, A. ED - Singh, Chandan T1 - Tri-sodium citrate stabilized gold nanocubes for plasmonic glucose sensing N2 - We report a two-step process for the immobilization of gold nanocubes (Au-NCs) on a glass surface using a combination of extraction and exchange reaction using poly (sodium 4-styrenesulfonate) (PSS) and trisodium citrate (TSC). Cetyltrimethylammonium chloride (CTAC) stabilized gold nanocubes (CTAC/Au-NCs) synthesized by a microfluidic synthesis procedure were successfully deposited on silane-modified glass substrate after extraction of excess CTAC using chloroform followed by exchange of CTAC to TSC on the surface of Au-NCs. Further, TSC/Au-NCs were found to be highly stable and suitable for microfluidic sensing of different glucose concentrations using localized surface plasmon resonance (LSPR) spectroscopy offering an improved sensitivity (126.37 nm/RIU). KW - Gold nanocubes KW - Surfactant KW - Immobilization PY - 2021 DO - https://doi.org/10.1016/j.matlet.2021.130655 SN - 0167-577X SN - 1873-4979 VL - 304 SP - 1 EP - 4 PB - Elsevier CY - New York, NY AN - OPUS4-53216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, A. A1 - Merck, V. A1 - Stranik, O. A1 - Fritzsche, W. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold nanolenses self-assembled by DNA origami N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - DNA origami KW - SERS KW - Gold nanoparticles KW - Plasmonics PY - 2017 UR - http://pubs.acs.org/doi/pdf/10.1021/acsphotonics.6b00946 DO - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 IS - 5 SP - 1123 EP - 1130 AN - OPUS4-40587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -