TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime-encoded microparticles - application to flow cytometry N2 - Analytical methods require efficient and versatile strategies to measure an increasing number of analytes that can be used in conjunction with established platforms like flow cytometry. Spectral multiplexing suffers from problems such as spectral crosstalk and often requires different excitation light sources increasing instrumentation costs. Thus, the number of distinguishable reporters with intensity-based barcodes is limited. An alternative can be lifetime encoding for discrimination of fluorophores based on their fluorescence decay kinetics. We report on the suitability of µm-sized polymer particles stained with organic dyes for lifetime encoding. These dyes are excitable at a standard laser diode wavelength and detectable within a single spectral window. For lifetime-based discrimination, these dyes display sufficiently different luminescence decay kinetics. We present the spectroscopic properties of these beads and address challenges like the limited number of detectable photons in a flow for the reliable discrimination. These studies are expected to pave the road to new applications of fluorescence lifetime multiplexing for time-domain flow cytometry. T2 - DPG Spring Meeting 2016 CY - Regensburg, Germany DA - 06.03.2016 KW - flow cytometry KW - lifetime encoding KW - life sciences KW - fluorescence KW - polymer particles PY - 2016 AN - OPUS4-37153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime-encoded microparticles for application in flow cytometry N2 - The steadily increasing number of analytes, especially in bioanalytics and environmental contexts, requires the development of efficient and versatile methods for the simultaneous determination of different parameters within a single run. Additionally, these methods should be applicable in conjunction with established platform technologies like flow cytometry. Fluorescence techniques have proven to fulfill these requirements. Commonly performed spectral multiplexing utilizing a color code suffers from several problems, such as the sensitivity of fluorescence intensity measurements to fluctuations in excitation light intensity and dye concentration and hence, photobleaching and spectral crosstalk limiting the achievable number of detection channels. Moreover, it typically requires different costly excitation light sources. T2 - Innovation Forum Senftenberg 2016 CY - Senftenberg, Germany DA - 01.06.2016 KW - flow cytometry KW - lifetime encoding KW - life sciences KW - fluorescence KW - polymer particles PY - 2016 AN - OPUS4-37154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - FLiMFlow – Recent achievements in flow cytometry with lifetime detection and lifetime-encoded beads N2 - Flow cytometry is a widespread technique in biological research and clinical applications. Two different directions are currently of importance in development of new methods in this field. Whereas analyses in research become increasingly complex and require a growing number of simultaneously detectable codes and fluorescent labels, also low-cost methods and portable devices are needed in routine application. Lifetime encoding could present an alternative to common spectral multiplexing. On the one hand, it addresses the need for additional codes by combining spectral and lifetime multiplexing. On the other hand, using only lifetime encoding could help to reduce instrument costs by keeping the number of excitation sources and detectors low. Here, we report on our recent progress in employing dye-stained lifetime-encoded polymer microparticles as a model system for lifetime encoding in flow cytometry. The discrimination of two lifetime codes was achieved with two bead sets. Moreover, the simultaneous detection of a spectrally different ligand fluorescence signal could be demonstrated. T2 - FLiMFlow meeting CY - Pisa, Italy DA - 28.09.2016 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2016 AN - OPUS4-38239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Fluorescence lifetime multiplex flow cytometry system (FliMFlow-MultiLife) N2 - Flow cytometry is a common tool in biological research and clinical analyses. In current developments, there are two different tendencies of interest. Firstly, we face the need for analysis methods that are capable of addressing more and more involved analysis tasks, i.e., an increasing number of fluorescent codes and markers is required. Secondly, low-cost diagnostic tests, e.g. in disease recognition, are needed in routine application. Lifetime encoding could be an attractive alternative to commonly applied color (spectral) encoding. By combining spectral and lifetime multiplexing, the number of simultaneously detectable codes might be increased by adding lifetime codes to the parameter space. Otherwise, instrumentation costs could be lowered using only lifetime encoding and thus avoiding costly excitation light sources and detectors. Here, we report on our recent progress in time-resolved flow cytometry using dye-stained lifetime-encoded polymer microparticles as a model system. We could show that the discrimination of two lifetime codes is feasible. Moreover, the simultaneous detection of a spectrally different ligand fluorescence signal excited at the same wavelength as the lifetime code fluorescence could be demonstrated. T2 - Photonik in den Lebenswissenschaften CY - Berlin, Germany DA - 09.11.2016 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2016 AN - OPUS4-38249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -