TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Witkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Time domain flow cytometry utilizing lifetime-encoded polymer microparticles N2 - Flow cytometry is a widely used method in biological research and medical diagnostics. Depending on the respective application, two opposing directions of development are currently of interest. On the one hand, there is a need for analyses of growing complexity employing more and more fluorescent labels and codes. On the other hand, cost-effective methods and portable, miniaturized, and robust instruments are desired. Commonly performed spectral multiplexing utilizing a color code suffers from several problems, such as the sensitivity of fluorescence intensity measurements to fluctuations in excitation light intensity and dye concentration and hence, photobleaching, dye leaking for certain encoding procedures, and spectral crosstalk, limiting the achievable number of detection channels. Moreover, it typically requires several costly excitation light sources. An innovative alternative can be lifetime multiplexing and the discrimination between different encoding fluorophores and carrier beads based on their fluorescence decay kinetics. In order to examine the potential of this approach, dye encoded beads (lifetime encoded surface chemistry) were prepared using several fluorophores from different dye classes and their suitability for lifetime discrimination in a flow was tested in conjunction with a custom designed flow cytometer equipped with a pulsed light source and a fast detector. In a first step, the spectroscopic properties of micrometer-sized dye-stained PMMA beads were studied by means of steady state and time-resolved photoluminescence measurements. For the performance of studies on the practical use of these microbeads in flow cytometry applications, a custom-built demonstrator model for a flow system was employed. Our results demonstrated that lifetime discrimination and simultaneous readout of a ligand fluorescence signal for analyte quantification with a set of dye-stained polymer microbeads at single wavelength excitation is feasible. These studies are expected to pave the road for new applications of fluorescence lifetime multiplexing within the framework of time-domain flow cytometry and bead-based assays. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2017 AN - OPUS4-39995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Nifontova, G. A1 - Krivenkov, V. A1 - Sukhanova, A. A1 - Nabiev, I. A1 - Resch-Genger, Ute T1 - Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads N2 - Semiconductor quantum dots (QDs) embedded into polymer microbeads are known to be very attractive emitters for spectral multiplexing and colour encoding. Their luminescence lifetimes or decay kinetics have been, however, rarely exploited as encoding parameter, although they cover time ranges which are not easily accessible with other luminophores. We demonstrate here the potential of QDs made from II/VI semiconductors with luminescence lifetimes of several 10 ns to expand the lifetime range of organic encoding luminophores in multiplexing applications using time-resolved flow cytometry (LT-FCM). For this purpose, two different types of QD-loaded beads were prepared and characterized by photoluminescence measurements on the ensemble level and by single-particle confocal laser scanning microscopy. Subsequently, these lifetime-encoded microbeads were combined with dye-encoded microparticles in systematic studies to demonstrate the potential of these QDs to increase the number of lifetime codes for lifetime multiplexing and combined multiplexing in the time and colour domain (tempo-spectral multiplexing). These studies were done with a recently developed novel luminescence lifetime flow cytometer (LT-FCM setup) operating in the time-domain, that presents an alternative to reports on phase-sensitive lifetime detection in flow cytometry. KW - Fluorescence life time KW - Flow cytometry KW - Lifetime-encoded beads KW - Quantum dots KW - Multiplexing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503316 VL - 10 IS - 1 SP - Article number: 653 PB - nature.com AN - OPUS4-50331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Fischer, Linn A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Stained microparticles for lifetime encoding - Flow cytometry application & photophysics N2 - Multiparametric analyses involving optical techniques like flow cytometry are at the core of studying complex systems in biological research and diagnostic applications. However, for fluorescence-based techniques, the number of reporters distinguishable in spectral multiplexing is limited by spectral overlap and requires a multitude of excitation light sources and detection Systems. Intensity encoding often used for bead assays suffers from problems regarding dye concentration control and excitation light intensity fluctuations. An alternative is luminescence lifetime encoding, particularly to minimize instrument costs. Here, we report on dye-stained polymer microparticles for lifetime encoding in flow cytometry with different organic dyes. This ranges from studies of the impact of parameters like dye loading concentration and particle diameter on fluorescence decay behavior to the demonstration of lifetime code reading and simultaneous ligand fluorescence signal detection with single-wavelength excitation in a flow. T2 - DPG Spring Meeting 2017 CY - Dresden, Germany DA - 19.03.2017 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2017 AN - OPUS4-40056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Luminophores for time-resolved flow cytometry N2 - For the application of time-resolved detection in the framework of flow cytometry, suitable luminescence lifetime code carriers are required. Here we report on our achievements concerning strategies to increase the accessible range of lifetime values and to realize continuously tunable lifetimes. To that end, we investigated polymer (PMMA) microbeads stained with mixtures of dyes exhibiting different fluorescence decay kinetics. At the expense of spectrally varying decay kinetics, it is possible to modify the lifetime by changing the dye concentration ratio. Moreover, semiconductor quantum dots incorporated into polymer beads were studied as alternative luminophores outperforming organic dyes with respect to long luminescence lifetimes, flexible choice of excitation wavelength and narrow spectral emission width. Our experiments demonstrate that lifetime adaption with dye mixing is basically feasible and semiconductor quantum dots represent promising candidates for long-lifetime codes. T2 - FLiMFlow meeting CY - Münster, Germany DA - 03.03.2017 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2017 AN - OPUS4-39307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding in time-domain flow cytometry N2 - Time-resolved flow cytometry represents an alternative to commonly applied spectral or intensity multiplexing in bioanalytics. At present, the vast majority of the reports on this topic focuses on phase-domain techniques and specific applications. In this report, we present a flow cytometry platform with time-resolved detection based on a compact setup and straightforward time-Domain measurements utilizing lifetime-encoded beads with lifetimes in the nanosecond range. We provide general assessment of time-domain flow cytometry and discuss the concept of this platform to address achievable resolution limits, data analysis, and requirements on suitable encoding dyes. Experimental data are complemented by numerical calculations on photon count numbers and impact of noise and measurement time on the obtained lifetime values. KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465765 SN - 2045-2322 VL - 8 IS - 1 SP - 16715, 1 EP - 11 PB - Nature CY - London AN - OPUS4-46576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime-encoded microparticles for application in flow cytometry N2 - The steadily increasing number of analytes, especially in bioanalytics and environmental contexts, requires the development of efficient and versatile methods for the simultaneous determination of different parameters within a single run. Additionally, these methods should be applicable in conjunction with established platform technologies like flow cytometry. Fluorescence techniques have proven to fulfill these requirements. Commonly performed spectral multiplexing utilizing a color code suffers from several problems, such as the sensitivity of fluorescence intensity measurements to fluctuations in excitation light intensity and dye concentration and hence, photobleaching and spectral crosstalk limiting the achievable number of detection channels. Moreover, it typically requires different costly excitation light sources. T2 - Innovation Forum Senftenberg 2016 CY - Senftenberg, Germany DA - 01.06.2016 KW - flow cytometry KW - lifetime encoding KW - life sciences KW - fluorescence KW - polymer particles PY - 2016 AN - OPUS4-37154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime-encoded microparticles - application to flow cytometry N2 - Analytical methods require efficient and versatile strategies to measure an increasing number of analytes that can be used in conjunction with established platforms like flow cytometry. Spectral multiplexing suffers from problems such as spectral crosstalk and often requires different excitation light sources increasing instrumentation costs. Thus, the number of distinguishable reporters with intensity-based barcodes is limited. An alternative can be lifetime encoding for discrimination of fluorophores based on their fluorescence decay kinetics. We report on the suitability of µm-sized polymer particles stained with organic dyes for lifetime encoding. These dyes are excitable at a standard laser diode wavelength and detectable within a single spectral window. For lifetime-based discrimination, these dyes display sufficiently different luminescence decay kinetics. We present the spectroscopic properties of these beads and address challenges like the limited number of detectable photons in a flow for the reliable discrimination. These studies are expected to pave the road to new applications of fluorescence lifetime multiplexing for time-domain flow cytometry. T2 - DPG Spring Meeting 2016 CY - Regensburg, Germany DA - 06.03.2016 KW - flow cytometry KW - lifetime encoding KW - life sciences KW - fluorescence KW - polymer particles PY - 2016 AN - OPUS4-37153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Borcherding, H. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime encoding in flow cytometry for bead‑based sensing of biomolecular interaction N2 - To demonstrate the potential of time-resolved flow cytometry (FCM) for bioanalysis, clinical diagnostics, and optically encoded bead-based assays, we performed a proof-of-principle study to detect biomolecular interactions utilizing fluorescence lifetime (LT)-encoded micron-sized polymer beads bearing target-specific bioligands and a recently developed prototype lifetime flow cytometer (LT-FCM setup). This instrument is equipped with a single excitation light source and different fluorescence detectors, one operated in the photon-counting mode for time-resolved measurements of fluorescence decays and three detectors for conventional intensity measurements in different spectral windows. First, discrimination of bead-bound biomolecules was demonstrated in the time domain exemplarily for two targets, Streptavidin (SAv) and the tumor marker human chorionic gonadotropin (HCG). In a second step, the determination of biomolecule concentration levels was addressed representatively for the inflammation-related biomarker tumor necrosis factor (TNF-α) utilizing fluorescence intensity measurements in a second channel of the LT-FCM instrument. Our results underline the applicability of LT-FCM in the time domain for measurements of biomolecular interactions in suspension assays. In the future, the combination of spectral and LT encoding and multiplexing and the expansion of the time scale from the lower nanosecond range to the longer nanosecond and the microsecond region is expected to provide many distinguishable codes. This enables an increasing degree of multiplexing which could be attractive for high throughput screening applications. KW - Fluorescence KW - Sensor KW - Assay KW - Protein KW - Multiplexing KW - Flow cytometry KW - Barcoding KW - Lifetime KW - Dye KW - Bead KW - Bead-based assay KW - Method KW - Quantification PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516007 VL - 10 IS - 1 SP - 19477 PB - Nature AN - OPUS4-51600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Fluorescence lifetime multiplex flow cytometry system (FliMFlow-MultiLife) N2 - Flow cytometry is a common tool in biological research and clinical analyses. In current developments, there are two different tendencies of interest. Firstly, we face the need for analysis methods that are capable of addressing more and more involved analysis tasks, i.e., an increasing number of fluorescent codes and markers is required. Secondly, low-cost diagnostic tests, e.g. in disease recognition, are needed in routine application. Lifetime encoding could be an attractive alternative to commonly applied color (spectral) encoding. By combining spectral and lifetime multiplexing, the number of simultaneously detectable codes might be increased by adding lifetime codes to the parameter space. Otherwise, instrumentation costs could be lowered using only lifetime encoding and thus avoiding costly excitation light sources and detectors. Here, we report on our recent progress in time-resolved flow cytometry using dye-stained lifetime-encoded polymer microparticles as a model system. We could show that the discrimination of two lifetime codes is feasible. Moreover, the simultaneous detection of a spectrally different ligand fluorescence signal excited at the same wavelength as the lifetime code fluorescence could be demonstrated. T2 - Photonik in den Lebenswissenschaften CY - Berlin, Germany DA - 09.11.2016 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2016 AN - OPUS4-38249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - FLiMFlow – Recent achievements in flow cytometry with lifetime detection and lifetime-encoded beads N2 - Flow cytometry is a widespread technique in biological research and clinical applications. Two different directions are currently of importance in development of new methods in this field. Whereas analyses in research become increasingly complex and require a growing number of simultaneously detectable codes and fluorescent labels, also low-cost methods and portable devices are needed in routine application. Lifetime encoding could present an alternative to common spectral multiplexing. On the one hand, it addresses the need for additional codes by combining spectral and lifetime multiplexing. On the other hand, using only lifetime encoding could help to reduce instrument costs by keeping the number of excitation sources and detectors low. Here, we report on our recent progress in employing dye-stained lifetime-encoded polymer microparticles as a model system for lifetime encoding in flow cytometry. The discrimination of two lifetime codes was achieved with two bead sets. Moreover, the simultaneous detection of a spectrally different ligand fluorescence signal could be demonstrated. T2 - FLiMFlow meeting CY - Pisa, Italy DA - 28.09.2016 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2016 AN - OPUS4-38239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -