TY - CONF A1 - Geißler, Daniel A1 - Quevedo, Pablo D. A1 - Dettweiler, Katrin A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Assessment of Particle-based Luminescent Reporters in Sandwich Immunoassays N2 - Immunoassays are an important field of in vitro diagnostics, as they allow for a fast and highly sensitive detection of many biologically and diagnostically relevant analytes such as proteins, hormones, and pharmaceuticals. Fluorescence immunoassays (FIA), where the antibodies and/or antigens are labeled with luminescent reporters, can be easily read out directly by measuring the intensity, decay time, or polarization of the emitted light. Moreover, FIA enable the simultaneous detection of different analytes within a single sample (multiplexing) and are particularly suited for point-of-care (POC) diagnostics and high throughput screening (HTS). The application of luminescent nanoparticles as reporters in FIA could further improve assay sensitivity, as several 100 to 1000 luminophores can be incorporated or attached to such nanoscale carriers, thereby amplifying their absorption and/or emission signals simply by increasing the number of dye molecules. Although dye-loaded polymeric and silica nanoparticles have been increasingly used as reporters in immunoassays, achievable signal amplification factors related to the use of particle reporters are still difficult to predict and quantify, which also hampers the comparability of different nanoscale reporters. To overcome this challenge, we performed a systematic comparison of spectroscopically and analytically well characterized particle labels in a homogeneous sandwich immunoassay format for the detection of the common inflammation biomarker C-reactive protein (CRP). Hereby, we studied the influence of particle parameters like size, surface chemistry, and dye loading concentration for different dye classes, i.e. organic dyes and metal ligand complexes, varying in their signal-relevant spectroscopic properties (molar absorption coefficients, photoluminescence quantum yields, Stokes shifts, and emission decay times), for different detection schemes (direct read-out vs. dye extraction). The emitters applied were chosen to be commercially available for a reasonable price, to absorb between 400 nm and 450 nm, and to emit in the visible region, as these parameters are accessible with most established microplate readers. Based upon our findings, we highlight the advantages and limitations of nanoscale reporters with respect to the choice of suitable particles, encoding dyes, and detection strategies, and compare the achievable sensitivities and dynamic ranges for our CRP model immunoassay. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Immunoassay KW - Nanoparticle KW - Luminescence PY - 2017 AN - OPUS4-39784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jin, Z. A1 - Geißler, Daniel A1 - Qiu, X. A1 - Wegner, Karl David A1 - Hildebrandt, N. T1 - A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA N2 - The importance of microRNA (miRNA) dysregulation for the development and progression of diseases and the discovery of stable miRNAs in peripheral blood have made these short-sequence nucleic acids next-generation biomarkers. Here we present a fully homogeneous multiplexed miRNA FRET assay that combines careful biophotonic design with various RNA hybridization and ligation steps. The single-step, single-temperature, and amplification-free assay provides a unique combination of performance parameters compared to state-of-the-art miRNA detection technologies. Precise multiplexed quantification of miRNA-20a, -20b, and -21 at concentrations between 0.05 and 0.5 nm in a single 150 mL sample and detection limits between 0.2 and 0.9 nm in 7.5 mL serum samples demonstrate the feasibility of both highthroughput and point-of-care clinical diagnostics. KW - Clinical diagnostics KW - FRET KW - MicroRNA KW - Multiplexing KW - Time-gated fluorescence detection PY - 2015 DO - https://doi.org/10.1002/anie.201504887 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 34 SP - 10024 EP - 10029 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Resch-Genger, Ute T1 - Synthesis of polymeric nanobeads with different surface group densities and their charaterization using multimodal cleavable reporters and lanthanide tags N2 - Polymeric nanoparticles (NP) are of increasing importance for a wide range of applications in the material and life sciences, including their use as drug carriers, fluorescent sensors and multimodal reporters in a large variety of bioassays and bioimaging studies. Application-relevant properties of NP include their size (and size distribution), shape, optical properties, and ease of subsequent functionalization, e.g. with linkers, sensor molecules, and bioligands. In this respect, knowledge of the chemical nature, the total number of surface groups and the number of groups accessible for subsequent coupling reactions is mandatory.1 Commercially available polystyrene NP often contain different additives like stabilizers, radical starters and crosslinkers, which can influence the quantification of surface functionalities. Moreover, they often have unknown surface group densities that may vary from batch to batch, which complicates or even hampers their reliable use in many (bio)applications. To circumvent these issues, we synthesized amino- and carboxy-functionalized, monodisperse 100 nm polystyrene NP with three different, well-defined surface group densities. Using a recently developed approach for the quantification of functional groups on nano- and microparticles with cleavable reporters,2 we quantified the assessible functional groups on the self-synthesised PS particles via optical spectroscopy (photometry) and inductively coupled optical emission spectrometry (32S ICP-OES). In addition, we developed a fluorimetric approach for the quantification of surface functional groups on nanoparticles based on the labelling with luminescent lanthanide complexes (LLC). In contrast to common organic dyes, LLC are not prone to photo¬luminescence quenching arising from reabsorption or dye aggregation, and thus, enable a reliable fluorometric quantification of the assessible functional groups on NP surfaces. Moreover, lanthanide tags can be detected with high specificity and sensitivity with analytical techniques such as XPS and ICP-MS, which allow for the multimodal validation of the fluorometric quantification approach. T2 - RSC-NPL Symposium "Nanoparticle concentration – critical needs and state-of-the-art measurement" and EMPIR 14IND12 Innanopart Open Day CY - London, UK DA - 24.05.2018 KW - Nanoparticle KW - Functional group KW - Quantification PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579818 DO - https://doi.org/10.1016/j.colsurfb.2023.113301 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Development of reference materials for flow cytometric analysis of extracellular vesicles N2 - The aim of task 1.4 within the EMPIR project 18HLT01 MetVesII is to produce low-RI solid particles with an effective RI between 1.37 and 1.42. To prepare these low-RI solid particles, polymer cores will be coated with a silica shell. Although the bulk RI of polymers, such as polystyrene (RI = 1.59) and PMMA (RI = 1.49), and fused silica (RI = 1.46) are higher than desired, an effective RI below 1.42 will be achieved by using a mesoporous silica shell with tuneable shell-thickness and a polymer core with sufficiently small size. This approach has four advantages: (1) monodisperse commercial polymer particles and silica shell chemistry are available, (2) low-RI solid particles will have a tuneable size and RI, (3) fluorescence can be added by incorporating fluorescent dyes into the polymer cores via an established staining procedure, and (4) fluorescent dyes within the polymer cores are shielded against influences from the sample matrix, e.g. fluorescence quenching effects altering the emission properties of the reference materials. T2 - MetVesII M9 Progress Meeting CY - Budapest, Hungary DA - 12.02.2020 KW - EMPIR 18HLT01 MetVesII KW - Extracellular vesicles (EV) KW - Flow cytometry (FCM) KW - Reference materials KW - Fluorescent particles PY - 2020 AN - OPUS4-50451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Preparation and characterization of reference particles for the calibration of flow cytometry for the detection of extracellular vesicles within the EMPIR project MetVes II N2 - Extracellular vesicles (EV) are cell-derived particles in body fluids, which have excellent potential as next-generation biomarkers. The exploitation of EV requires reliable measurements, which is currently very difficult, as most EV are smaller than 200 nm. At present, flow cytometry (FCM) is the most appropriate technique for EV analysis in biological samples, as FCM is readily available in many clinical laboratories and allows to identify cell-specific EV at high throughput. However, due to technical variations between different FCM instruments, EV concentration measurements are currently not well comparable between most laboratories. Therefore, EV reference materials and standardized reference methods are urgently needed to calibrate flow rate, light scattering intensity, and fluorescence intensity of FCM in the sub-micrometer size range. This requires a better matching of the optical properties of calibration beads and EV as can be realized with current polystyrene calibration beads. The EMPIR project 18HLT01 “MetVes II” aims to develop synthetic reference materials and traceable measurement methods to standardize EV measurements. The reference materials should resemble EV properties, so that calibrations are reliable and do not require a change of acquisition settings. Hence, the reference materials should contain particles with a traceable number concentration in the range of 109–1012 particles/mL to calibrate flow rate, a traceable size with discrete diameters between 50–1000 nm and a refractive index (RI) in the range of 1.37–1.42 to calibrate scattering intensity, and a traceable fluorescence intensity between 100–100,000 molecules of equivalent soluble fluorochromes (MESF). At BAM, various approaches to prepare such low-RI nanometer-sized reference materials will be studied, preliminary results of the primary characterization of these candidate reference particles will be presented, and possible applications besides FCM-based EV detection will be outlined. T2 - 29th Meeting of the German Society for Cytometry (DGfZ) CY - Berlin, Germany DA - 25.09.2019 KW - Extracellular vesicles (EV) KW - Flow cytometry KW - Reference particles KW - EMPIR project KW - 18HLT01 MetVes II PY - 2019 AN - OPUS4-50394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Tougaard, S. A1 - Werner, W. S. M. A1 - Hronek, M. A1 - Kunz, Valentin A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Nirmalananthan-Budau, Nithiya A1 - Geißler, Daniel A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Correction to "Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy" N2 - This is a corrigendum to the original article "Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy" that was published in "The journal of physical chemistry C", vol. 123 (2019), no. 49 pp. 29765-29775. PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505451 DO - https://doi.org/10.1021/acs.jpcc.0c00027 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 6 SP - 3923 PB - American Chemical Society CY - Washington, DC AN - OPUS4-50545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Moser, Marko A1 - Kläber, Christopher A1 - Schäfer, A. A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters for quantifying carboxy and amino groups on organic and inorganic nanoparticles N2 - Organic and inorganic nanoparticles (NPs) are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. These applications require knowledge of the chemical nature, total number of surface groups, and the number of groups accessible for subsequent coupling of e.g., antifouling ligands, targeting bioligands, or sensor molecules. To establish the concept of catch-and-release assays, cleavable probes were rationally designed from a quantitatively cleavable disulfide moiety and the optically detectable reporter 2-thiopyridone (2-TP). For quantifying surface groups on nanomaterials, first, a set of monodisperse carboxy-and amino-functionalized, 100 nm-sized polymer and silica NPs with different surface group densities was synthesized. Subsequently, the accessible functional groups (FGs) were quantified via optical spectroscopy of the cleaved off reporter after its release in solution. Method validation was done with inductively coupled plasma optical emission spectroscopy (ICP-OES) utilizing the sulfur atom of the cleavable probe. This comparison underlined the reliability and versatility of our probes, which can be used for surface group quantification on all types of transparent, scattering, absorbing and/or fluorescent particles. The correlation between the total and accessible number of FGs quantified by conductometric titration, qNMR, and with our cleavable probes, together with the comparison to results of conjugation studies with differently sized biomolecules reveal the potential of catch-and-release reporters for surface analysis. Our findings also underline the importance of quantifying particularly the accessible amount of FGs for many applications of NPs in the life sciences. KW - Advanced Materials KW - Surface Chemistry KW - Organic–inorganic nanostructures KW - Funtional Groups KW - Quantitative Analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499081 DO - https://doi.org/10.1038/s41598-019-53773-3 VL - 9 SP - 17577-1 EP - 17577-11 PB - Springer Nature CY - London AN - OPUS4-49908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Tougaard, S. A1 - Werner, W. S. M. A1 - Hronek, M. A1 - Kunz, Valentin A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Nirmalananthan-Budau, Nithiya A1 - Geißler, Daniel A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy N2 - Core–shell nanoparticles (CSNPs) have become indispensable in various industrial applications. However, their real internal structure usually deviates from an ideal core–shell structure. To control how the particles perform with regard to their specific applications, characterization techniques are required that can distinguish an ideal from a nonideal morphology. In this work, we investigated poly(tetrafluoroethylene)–poly(methyl methacrylate) (PTFE–PMMA) and poly(tetrafluoroethylene)–polystyrene (PTFE–PS) polymer CSNPs with a constant core diameter (45 nm) but varying shell thicknesses (4–50 nm). As confirmed by transmission scanning electron microscopy (T-SEM), the shell completely covers the core for the PTFE–PMMA nanoparticles, while the encapsulation of the core by the shell material is incomplete for the PTFE–PS nanoparticles. X-ray photoelectron spectroscopy (XPS) was applied to determine the shell thickness of the nanoparticles. The software SESSA v2.0 was used to analyze the intensities of the elastic peaks, and the QUASES software package was employed to evaluate the shape of the inelastic background in the XPS survey spectra. For the first time, nanoparticle shell thicknesses are presented, which are exclusively based on the analysis of the XPS inelastic background. Furthermore, principal component analysis (PCA)-assisted time-of-flight secondary-ion mass spectrometry (ToF-SIMS) of the PTFE–PS nanoparticle sample set revealed a systematic variation among the samples and, thus, confirmed the incomplete encapsulation of the core by the shell material. As opposed to that, no variation is observed in the PCA score plots of the PTFE–PMMA nanoparticle sample set. Consequently, the complete coverage of the core by the shell material is proved by ToF-SIMS with a certainty that cannot be achieved by XPS and T-SEM. KW - XPS KW - T-SEM KW - ToF-SIMS KW - Core-shell nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499165 DO - https://doi.org/10.1021/acs.jpcc.9b09258 VL - 123 IS - 49 SP - 29765 EP - 29775 PB - American Chemical Society CY - Washington, DC AN - OPUS4-49916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegmann, Marc A1 - Jochum, T. A1 - Somma, V. A1 - Sowa, M. A1 - Scholz, J. A1 - Fröhlich, E. A1 - Hoffmann, Katrin A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots N2 - The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials. KW - Nanomaterial KW - Genotoxicity testing KW - γ-H2AX assay KW - Quantum dot PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486318 DO - https://doi.org/10.1039/C9NR01021A SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13458 EP - 13468 PB - The Royal Society of Chemistry AN - OPUS4-48631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Development of reference materials (WP1) and reference methods (WP2) for the standardisation of concentration measurements of extracellular vesicles N2 - BAM provides leading expertise in preparation, characterisation and application of fluorescent reference standards and biomedical relevant nanomaterials, as well as in traceable, absolute, and quantitative fluorometric measurements of transparent and scattering systems in the ultraviolet, visible, and near infrared spectral region. BAM will prepare solid low-RI particles in WP1, will develop reference methods to determine the fluorescence intensity and RI of reference materials in WP2, and will measure the fluorescence intensity of EVs in biological test samples of WP3. T2 - EMPIR 18HLT01 "MetVesII" Kick-off meeting CY - Delft, The Netherlands DA - 17.06.2019 KW - Reference materials KW - Reference methods KW - Extracellualr vesicles PY - 2019 AN - OPUS4-48813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -