TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots JF - Scientific reports N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Kaiser, Martin A1 - Resch-Genger, Ute T1 - Critical review of the determination of photoluminescence quantum yields of luminescent reporters JF - Analytical and bioanalytical chemistry N2 - A crucial variable for methodical performance evaluation and comparison of luminescent reporters is the photoluminescence quantum yield (Φ pl). This quantity, defined as the number of emitted photons per number of absorbed photons, is the direct measure of the efficiency of the conversion of absorbed photons into emitted light for small organic dyes, fluorescent proteins, metal–ligand complexes, metal clusters, polymeric nanoparticles, and semiconductor and up-conversion nanocrystals. Φ pl determines the sensitivity for the detection of a specific analyte from the chromophore perspective, together with its molar-absorption coefficient at the excitation wavelength. In this review we discuss different optical and photothermal methods for measuring Φ pl of transparent and scattering systems for the most common classes of luminescent reporters, and critically evaluate their potential and limitations. In addition, reporter-specific effects and sources of uncertainty are addressed. The ultimate objective is to provide users of fluorescence techniques with validated tools for the determination of Φ pl, including a series of Φ pl standards for the ultraviolet, visible, and near-infrared regions, and to enable better judgment of the reliability of literature data. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Organic dye KW - Nanoparticle KW - Quantum dot KW - Up-conversion nanocrystal KW - Optical probe KW - Standard KW - Quality assurance KW - Integrating sphere spectroscopy KW - Photoacoustic spectroscopy KW - Thermal lensing KW - Nanocavity PY - 2015 DO - https://doi.org/10.1007/s00216-014-8130-z SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 1 SP - 59 EP - 78 PB - Springer CY - Berlin AN - OPUS4-32406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Quantification of anisotropy-related uncertainties in relative photoluminescence quantum yield measurements of nanomaterials - semiconductor quantum dots and rods JF - Zeitschrift für physikalische Chemie N2 - In order to assess the anisotropy-related uncertainties of relatively determined photoluminescence quantum yields (ΦPL) of molecular emitters and luminescent nanomaterials, we compared ΦPL values measured without and with polarizers using magic angle conditions and studied systematically the dependence of the detected emission intensity on the polarizer settings for samples of varying anisotropy. This includes a dispersion of a spherical quantum dot (QD) with an ideally isotropic emission, a solution of a common small organic dye in a fluid solvent as well as dispersions of elongated quantum dot rods (QDR) with an anisotropic luminescence and a small organic dye in a rigid polymeric matrix, as ideally anisotropic emitter. Our results show that for instruments lacking polarizers, anisotropy-related measurement uncertainties of relative photoluminescence quantum yields can amount to more than 40%, with the size of these systematic errors depending on the difference in emission anisotropy between the sample and the standard. KW - Photoluminescence KW - Quantum Yield KW - Emission Anisotropy KW - Quantum Dot Rod KW - Quantum Dot KW - Dye PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325240 DO - https://doi.org/10.1515/zpch-2014-0626 SN - 0942-9352 SN - 2196-7156 SN - 0044-3336 SN - 0044-3328 VL - 229 IS - 1-2 SP - 153 EP - 165 PB - Oldenbourg CY - München AN - OPUS4-32524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -