TY - JOUR A1 - Lay, Vera A1 - Buske, S. A1 - Townend, J. A1 - Kellett, R. A1 - Savage, M. A1 - Schmitt, D. R. A1 - Constantinou, A. A1 - Eccles, J. D. A1 - Gorman, A. A1 - Bertram, M. A1 - Hall, K. A1 - Lawton, D. A1 - Kofman, R. T1 - 3D Active Source Seismic Imaging of the Alpine Fault Zone and the Whataroa Glacial Valley in New Zealand N2 - The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)-2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP-2B borehole. At shallower depths (z < 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments and a major fault (z < 0.5 km) are identified 0.5–1 km south of the DFDP-2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa. KW - Imaging KW - Signal processing KW - Seismic KW - Borehole KW - DAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539163 DO - https://doi.org/10.1029/2021JB023013 VL - 126 IS - 12 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-53916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartoschewitz, R. A1 - Appel, P. A1 - Barrat, J.-A. A1 - Bischoff, A. A1 - Caffee, M.W. A1 - Franchi, I.A. A1 - Gabelica, Z. A1 - Greenwood, R.C. A1 - Harir, M. A1 - Harries, D. A1 - Hochleitner, R. A1 - Hopp, J. A1 - Laubenstein, M. A1 - Mader, B. A1 - Marques, R. A1 - Morlok, A. A1 - Nolze, Gert A1 - Prudêncio, M.I. A1 - Rochette, P. A1 - Ruf, A. A1 - Schmitt-Kopplin, P. A1 - Seemann, E. A1 - Szurgot, M. A1 - Tagle, R. A1 - Wach, R.A. A1 - Welten, K. C. A1 - Weyrauch, M. A1 - Wimmer, K. T1 - The Braunschweig meteorite − a recent L6 chondrite fall in Germany N2 - On April 23rd 2013 at 2:07 a.m., a 1.3 kg meteorite fell in the Braunschweig suburb Melverode (52° 13′ 32.19″ N. 10° 31′ 11.60″ E). Its estimated velocity was 250 km/h and it formed an impact pit in the concrete fall site with a diameter of 7 cm and a depth of 3 cm. Radial dust striae are present around the impact pit. As a result of the impact, the meteorite disintegrated into several hundred fragments with masses up to 214 g. The meteorite is a typical L6 chondrite, moderately shocked (S4) – but with a remarkably high porosity (up to 20 vol%). The meteorite was ejected from its parent body as an object with a radius of about 10–15 cm (15–50 kg). The U,Th-He gas retention age of ∼550 Ma overlaps with the main impact event on the L-chondrite parent body ∼470 Ma ago that is recorded by many shocked L chondrites. The preferred cosmic-ray exposure age derived from production of radionuclides and noble gas isotopes is (6.0 ± 1.3) Ma. KW - Braunschweig meteorite KW - L chondrite KW - Fall reconstruction KW - Petrology and mineralogy KW - Organic matter KW - IR spectroscopy KW - Bulk chemistry KW - Radionuclides KW - Noble gas isotopes KW - Specific heat PY - 2016 DO - https://doi.org/10.1016/j.chemer.2016.10.004 SN - 0009-2819 SN - 1611-5864 VL - 77 IS - 1 SP - 207 EP - 224 AN - OPUS4-42018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Lipus, D. A1 - Arens, F. L. A1 - Baque, M. A1 - Bornemann, T. L. V. A1 - de Vera, J. P. A1 - Flury, M. A1 - Froesler, J. A1 - Heinz, J. A1 - Hwang, Y. A1 - Kounaves, S. P. A1 - Mangelsdorf, K. A1 - Meckenstock, R. U. A1 - Pannekens, M. A1 - Probst, A. J. A1 - Saenz, J. S. A1 - Schirmack, J. A1 - Schloter, M. A1 - Schmitt-Kopplin, P. A1 - Schneider, Beate A1 - Uhl, J. A1 - Vestergaard, G. A1 - Valenzuela, B. A1 - Zamorano, P. A1 - Wagner, D. T1 - Microbial hotspots in lithic microhabitats inferred from DNA fractionation and metagenomics in the Atacama Desert N2 - The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology. KW - Desert ecology KW - Extremophile KW - Hyperarid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527959 DO - https://doi.org/10.3390/microorganisms9051038 SN - 2076-2607 VL - 9 IS - 5 SP - 1038 PB - MDPI CY - Basel AN - OPUS4-52795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gabitov, R.I. A1 - Schmitt, A.K. A1 - Rosner, Martin A1 - McKeegan, K.D. A1 - Gaetani, G.A. A1 - Cohen, A.L. A1 - Watson, E.B. A1 - Harrison, T.M. T1 - In situ delta7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites N2 - In situ secondary ion mass spectrometry (SIMS) analyses of δ7Li, Li/Ca, and Mg/Ca were performed on five synthetic aragonite samples precipitated from seawater at 25°C at different rates. The compositions of δ7Li in bulk aragonites and experimental fluids were measured by multicollector inductively coupled plasma–mass spectrometry (MC-ICP-MS). Both techniques yielded similar δ7Li in aragonite when SIMS analyses were corrected to calcium carbonate reference materials. Fractionation factors α7Li/6Li range from 0.9895 to 0.9923, which translates to a fractionation between aragonite and fluid from -10.5‰ to -7.7‰. The within-sample δ7Li range determined by SIMS is up to 27‰, exceeding the difference between bulk δ7Li analyses of different aragonite precipitates. Moreover, the centers of aragonite hemispherical bundles (spherulites) are enriched in Li/Ca and Mg/Ca relative to spherulite fibers by up to factors of 2 and 8, respectively. The Li/Ca and Mg/Ca ratios of spherulite fibers increase with aragonite precipitation rate. These results suggest that precipitation rate is a potentially important consideration when using Li isotopes and elemental ratios in natural carbonates as a proxy for seawater composition and temperature. KW - Lithium KW - Isotope KW - Aragonite KW - Rate KW - SIMS KW - Magnesium PY - 2011 DO - https://doi.org/10.1029/2010GC003322 SN - 1525-2027 VL - 12 IS - 3 (Technical Brief) SP - 1 EP - 16 CY - Washington, DC, USA AN - OPUS4-23312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -