TY - CONF A1 - Krämer, D. A1 - Violet, N. A1 - Paul, Andrea A1 - Maiwald, Michael A1 - King, R. T1 - Robustification of partial least squares predictions based on near infrared spectroscopy trough nonlinear state estimation N2 - The Cultivation of “Saccharomyces cerevisiae” for enzyme production was monitored using Near-infrared spectroscopy. An inline NIR optrode was therefore immersed in a 15 L vessel. The calibration was done using a Partial Least Squares (PLS) model with reference measurements of glucose, ammonium, phosphate, ethanol, and optical density. A nonlinear biological process model based on an extended Kalman Filter (EKF) was used to describe the fermentation behavior. It was found that EKF corrects inaccurate PLS predictions. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - PLS-R KW - Near infrared spectroscopy KW - Prozess-Spektroskopie KW - Process analytical technology KW - Fermentation PY - 2015 SP - 77 EP - 77 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Meyer, Klas A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for hydroformylation miniplant II - Calibration and prediction by Raman spectra N2 - The Collaborative Research Center InPROMPT aims to establish a novel process concept for the hydroformylation of long-chained olefins, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro-emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the temperature and concentration sensitive multi-phase system demands a continuous observation of the reaction to achieve an operational and economically feasible plant operation. For that purpose, we tested the potential of both NMR and Raman spectroscopy for process control assistance. The lab-scale experiments were supported by sampling for off-line GC-analysis as reference analytics. The results of the NMR experiments will be part of another contribution. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Process analytical technology KW - Prozess-Spektroskopie KW - Emulsions KW - Hydroformylation KW - Reaction monitoring KW - Raman spectroscopy PY - 2015 SP - 66 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -