TY - JOUR A1 - Nolze, Gert A1 - Dietrich, D. A1 - Lampke, T. A1 - Del-Solar-Velarde, N. A1 - Nickel, D. A1 - Chapoulie, R. A1 - Castillo Butters, L.J. T1 - The potential of EBSD and EDS for ceramics investigations - Case studies on sherds of pre-Columbian pottery JF - archaeometry N2 - The work focuses on the potential of structural and chemical examinations by scanning electron microscopy based methods for archaeometric studies on ceramics. Achieved by a single preparation technique (polished block sections), the feasibility and benefits of electron backscatter diffraction are demonstrated as case studies using polychrome examples of pre-Columbian pottery (Wari, Moche and Cajamarca). Elemental and phase maps allow for separate consideration of clay and temper. Identification of mineral phases and intergrowths of temper particles provide information for clarifying clay procurement and firing techniques with respect to local versus non-local pottery to enlighten trade relations, technological transfer and shared heritage of pre-Columbian cultures. KW - SEM–EDS/EBSD KW - Pre-Columbian ceramics KW - Temper KW - Pseudobrookite KW - Titanite PY - 2017 VL - 60 IS - 3 SP - 489 EP - 501 AN - OPUS4-45096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickel, C. A1 - Angelstorf, J. A1 - Bienert, Ralf A1 - Burkart, C. A1 - Gabsch, S. A1 - Giebner, S. A1 - Haase, A. A1 - Hellack, B. A1 - Hollert, H. A1 - Hund-Rinke, K. A1 - Jungmann, D. A1 - Kaminski, H. A1 - Luch, A. A1 - Maes, H.M. A1 - Nogowski, A. A1 - Oetken, M. A1 - Schaeffer, A. A1 - Schiwy, A. A1 - Schlich, K. A1 - Stintz, M. A1 - von der Kammer, F. A1 - Kuhlbusch, T.A.J. T1 - Dynamic light-scattering measurement comparability of nanomaterial suspensions JF - Journal of nanoparticle research N2 - Increased use of nanomaterials in everyday products leads to their environmental release and therefore, the information need on their fate and behaviour. Nanomaterials have to be suspended with high repeatability and comparability for studies on environmental effects. They also have to be well characterised with a focus on the state of agglomeration and particle size distribution. Dynamic light-scattering (DLS) is a common technique used for these measurements. If suspensions are prepared in different laboratories, then concern has risen about the comparability of the measured results, especially when different DLS instruments are used. Therefore, for quality assurance, a round-robin test was conducted to assess the comparability of different DLS instruments and a dispersion protocol in ten independent laboratories. Polystyrene and TiO2 were chosen as test (nano)materials. For the comparability of the DLS instruments, the average sizes of the PSL and a stabilised TiO2 suspension were measured. The measured average hydrodynamic diameter shows an overall good inter-laboratory comparability. For the PSL suspension, an average hydrodynamic diameter of 201 ± 13 nm and for the TiO2 suspension an average diameter of 224 ± 24 nm were detected. For the TiO2 suspension that was prepared at each laboratory following an established suspension preparation protocol, an average hydrodynamic diameter of 211 ± 11 nm was detected. The measured average particle size (mode) increased up to 284 nm with a high standard deviation of 119 nm if the preparation protocol could not established and different procedures or different equipment were employed. This study shows that no significant differences between the employed DLS instrument types were determined. It was also shown that comparable measurements and suspension preparation could be achieved if well-defined suspension preparation protocols and comparable equipment can be used. KW - Comparison measurement KW - Dynamic light scattering KW - Nanomaterial suspension KW - Standard operation procedure KW - Instrumentation PY - 2014 DO - https://doi.org/10.1007/s11051-014-2260-2 SN - 1388-0764 SN - 1572-896X VL - 16 SP - 2260-1 EP - 2260-12 PB - Kluwer CY - Dordrecht AN - OPUS4-30193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -