TY - JOUR A1 - Müller-Vahl, H. F. A1 - Strangfeld, Christoph A1 - Nayeri, C. N. A1 - Paschereit, C. O. A1 - Greenblatt, D. T1 - Dynamic Stall Under Combined Pitching and Surging JF - AIAA Journal N2 - Dynamic stall often occurs under conditions of simultaneous unsteady pitching and surging (e.g., rotorcraft and wind turbines), butmanymodels employ a dimensionless time base that implicitly assumes that surging is superimposed, in a quasi-steady manner, on dynamic pitching. An unsteady wind tunnel was used to examine this assumption, where a technique was developed to quantify the unsteady effects of surging on a pitching NACA 0018 airfoil. The technique involved performing multiple harmonic pitching experiments under nominally steady freestream conditions that bracketed a corresponding 50% surging amplitude (1.25 ⋅ 105 ≤ Re ≤ 3.75 ⋅ 105). By interpolating these data, unsteady-pitching/quasi-steady-surging data sets were constructed and compared with de facto synchronous pitch and surging experiments, thereby isolating the unsteady effects of surging on a pitching airfoil. Both large and small poststall maximum angles of attack (αs + 5° and αs + 15°) were considered at multiple pitch-surge phase differences. During deep dynamic stall (αs � 15°), with large-scale separation, surging was seen to have a secondary effect on the unsteady aerodynamics. However, at small poststall maximum angles of attack (αs + 5°), either light or deep dynamic stall behavior was observed depending upon the pitch-surge phase difference. This was attributed to Reynolds number history effects, exemplified by boundary-layer transition, and thus it can be referred to as “transitional” dynamic stall. KW - Dynamic stall KW - Angle of attack oscillations KW - Free stream velocity osciallations PY - 2020 DO - https://doi.org/10.2514/1.J059153 VL - 58 IS - 12 SP - 5134 EP - 5145 PB - American Institute of Aeronautics and Astronautics AN - OPUS4-51037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -