TY - JOUR A1 - Greenblatt, D. A1 - Müller-Vahl, H. A1 - Strangfeld, Christoph T1 - Laminar separation bubble bursting in a surging stream JF - Laminar separation bubble bursting in a surging stream N2 - The effect of high-amplitude harmonic surging on airfoil laminar separation bubbles, at small angles of attack, was investigated experimentally in a dedicated surging-flow wind tunnel. A generalized pressure coefficient was developed that accounts for local static pressure variations due to surging. This critical generalization facilitated direct comparisons between surging and quasisteady pressure coefficients, and thus unsteady effects could be distinguished from Reynolds number effects. A momentum-integral boundary layer analysis was implemented to determine movement of the bubble separation point, and movement of the transition point was extracted from experimental surface pressure coefficients. The most significant finding was that bubble bursting occurs, counterintuitively, during early imposition of the favorable temporal pressure gradient, because the favorable pressure gradient rapidly drives the bubble aft, rendering it unable to reattach. This surge-induced dynamic stall mechanism resulted in large lift and form-drag coefficient oscillations. Furthermore, failure to implement the generalized pressure coefficient definition resulted in temporal form-drag coefficient errors of up to 400 counts. KW - Aerodynamics KW - Boundary layer receptivity, stability & separation KW - Boundary layers PY - 2023 DO - https://doi.org/10.1103/PhysRevFluids.8.L012102 SN - 2469-990X VL - 8 IS - 1 SP - 1 EP - 11 PB - American Physical Society AN - OPUS4-56860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mack, D. E. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Helle, O. A1 - Sebold, D. A1 - Vaßen, R. A1 - Bruno, Giovanni T1 - Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing JF - Journal of the American Ceramic Society N2 - Degradation of thermal barrier coatings (TBCs) in gas‐turbine engines due to calcium–magnesium–aluminosilicate (CMAS) glassy deposits from various sources has been a persistent issue since many years. In this study, state of the art electron microscopy was correlated with X‐ray refraction techniques to elucidate the intrusion of CMAS into the porous structure of atmospheric plasma sprayed (APS) TBCs and the formation and growth of cracks under thermal cycling in a burner rig. Results indicate that the sparse nature of the infiltration as well as kinetics in the burner rig are majorly influenced by the wetting behavior of the CMAS. Despite the obvious attack of CMAS on grain boundaries, the interaction of yttria‐stabilized zirconia (YSZ) with intruded CMAS has no immediate impact on structure and density of internal surfaces. At a later stage the formation of horizontal cracks is observed in a wider zone of the TBC layer. KW - Characterization KW - CMAS KW - Synchrotron X‐ray refraction radiography KW - Thermal barrier coatings PY - 2019 DO - https://doi.org/10.1111/jace.16465 SN - 0002-7820 SN - 1551-2916 VL - 102 IS - 10 SP - 6163 EP - 6175 PB - Wiley CY - Oxford AN - OPUS4-47804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medina, A. A1 - Ol, M. V. A1 - Greenblatt, D. A1 - Müller-Vahl, H. A1 - Strangfeld, Christoph T1 - High-Amplitude Surge of a Pitching Airfoil: Complementary Wind- and Water-Tunnel Measurements JF - AIAA Journal N2 - RECENT interest in gust response, rotorcraft forward flight and wind energy, among other applications, has focused on streamwise oscillations of nominally two-dimensional airfoils in attached and separated flows. The airfoil may be simultaneously held at constant incidence or execute some maneuver, such as pitch. The relative freestream is spatially uniform but temporally unsteady, and this can be accomplished in a ground-test facility in two ways. The first method is to vary the output of the prime mover, such as the rotational speed of the impeller or the blower driving a wind tunnel, or (alternatively) to vary the pressure drop in the tunnel, thereby varying the flow speed in the test section, despite nominally constant primemover revolutions per minute. The second method is used to keep the tunnel’s operating speed constant, as well as to move the test article in the streamwise direction, fore and aft (for example, via an electric linear motor), such that the relative freestream speed felt by the test article varies according to some waveform. Typically, the latter approach is chosen in water tunnels, where there is too much tunnel-circuit inertia to vary the flow speed directly but where the usually low tunnel test section flow speeds enable large excursions in the relative freestream by oscillation of the test article. In fact, outright reverse flow is possible by moving the test article in the laboratory frame at a higher speed than the water-tunnel flow speed. In either case, a sinusoidal relative-speed waveform is the most intuitively realizable, and this can be combined with similar oscillations in the airfoil incidence angle or other kinematics. Although the two methods of realizing streamwise oscillations are mechanically distinct, experimental comparisons between an oscillating test article in a water tunnel and a stationary test article in a wind tunnel with a louvermechanismhave demonstrated agreement in themeasured lift and drag histories. Such experimentswere performed by Granlund et al. for a 10% freestream amplitude oscillation and fixed airfoil incidence, comparing a free-surface water tunnel and a closed-circuit wind tunnel. After buoyancy was subtracted from the wind-tunnel data (resulting from the louver pressure drop) and the model inertia subtracted from the water-tunnel data (resulting from acceleration of the test article), the remaining lift and drag histories matched well at the low freestream oscillation amplitude regime. The work of Granlund et al. was later extended to high-advance-ratio streamwise oscillations of 50% amplitude by Greenblatt et al., where the aerodynamic histories of the water-tunnel and wind-tunnel facilities were compared in combined pitch and freestreamoscillations (governed by relative pitch phase), pure pitch oscillations, and purely freestream oscillations. Agreement between the two facilities’ data for fixed-incidence streamwise oscillations was reasonably good, and in fact, better than agreement in just the static lift and drag, evidently owing to differences in blockage and model-support systems. Additionally, Greenblatt et al. determined there was no strong coupling between simultaneous freestream oscillations and pitch oscillations on resultant lift and moment coefficients. KW - Wind energy KW - Dynamic stall KW - Deep stall KW - Airfoil surging KW - Airfoil pitching PY - 2018 DO - https://doi.org/10.2514/1.J056408 SN - 0001-1452 SN - 1533-385X VL - 56 IS - 4 SP - 1703 EP - 1709 PB - American Institute of Aeronautics and Astronautics AN - OPUS4-43994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller-Vahl, H. F. A1 - Strangfeld, Christoph A1 - Nayeri, C. N. A1 - Paschereit, C. O. A1 - Greenblatt, D. T1 - Dynamic Stall Under Combined Pitching and Surging JF - AIAA Journal N2 - Dynamic stall often occurs under conditions of simultaneous unsteady pitching and surging (e.g., rotorcraft and wind turbines), butmanymodels employ a dimensionless time base that implicitly assumes that surging is superimposed, in a quasi-steady manner, on dynamic pitching. An unsteady wind tunnel was used to examine this assumption, where a technique was developed to quantify the unsteady effects of surging on a pitching NACA 0018 airfoil. The technique involved performing multiple harmonic pitching experiments under nominally steady freestream conditions that bracketed a corresponding 50% surging amplitude (1.25 ⋅ 105 ≤ Re ≤ 3.75 ⋅ 105). By interpolating these data, unsteady-pitching/quasi-steady-surging data sets were constructed and compared with de facto synchronous pitch and surging experiments, thereby isolating the unsteady effects of surging on a pitching airfoil. Both large and small poststall maximum angles of attack (αs + 5° and αs + 15°) were considered at multiple pitch-surge phase differences. During deep dynamic stall (αs � 15°), with large-scale separation, surging was seen to have a secondary effect on the unsteady aerodynamics. However, at small poststall maximum angles of attack (αs + 5°), either light or deep dynamic stall behavior was observed depending upon the pitch-surge phase difference. This was attributed to Reynolds number history effects, exemplified by boundary-layer transition, and thus it can be referred to as “transitional” dynamic stall. KW - Dynamic stall KW - Angle of attack oscillations KW - Free stream velocity osciallations PY - 2020 DO - https://doi.org/10.2514/1.J059153 VL - 58 IS - 12 SP - 5134 EP - 5145 PB - American Institute of Aeronautics and Astronautics AN - OPUS4-51037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schob, D. A1 - Roszak, R. A1 - Sagradov, I. A1 - Sparr, H. A1 - Ziegenhorn, M. A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Experimental determination and numerical simulation of material and damage behaviour of 3D printed polyamide 12 under quasi-static loading JF - Archives of Mechanics N2 - In order to characterise the material and damage behaviour of additively manufactured polyamide 12 (PA12) under quasi-static load and to implement it in a numerical model, experiments under quasi-static load as well as microstructural investigations were carried out. Selective laser sintering (SLS) was used as the manufacturing process. For the classification of the material behaviour, quasi-static cyclic tests with holding times as well as tensile tests were performed. X-ray refraction and computed tomography (CT) were used to investigate the damage behaviour. The Chaboche model, which has already been applied for metallic materials under thermomechanical loading, served as the basis for the selection of the numerical material model. The same procedure was used for the selection of the damage model, where the Gurson–Tvergaard–Needleman (GTN) model was chosen, which was already used for porous metallic materials. The Chaboche model shows very good agreement with experimental results. Furthermore, the coupling with the GTN model allows a very good modelling of the damage behaviour. Finally, it could be shown that the selected models are suitable to simulate the material and damage behaviour of 3D printed PA12. KW - Polyamide 12 KW - 3D printing KW - Viscoplastic KW - Chaboche model KW - Damage KW - GTN model KW - X-ray refraction KW - Computed tomography PY - 2019 DO - https://doi.org/10.24423/aom.3162 SN - 0373-2029 VL - 71 IS - 4-5 SP - 507 EP - 526 PB - IPPT PAN - Polish Academy of Sciences, Institute of Fundamental Technological Research CY - Warsaw AN - OPUS4-49409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schob, D. A1 - Sagradov, I. A1 - Roszak, R. A1 - Sparr, H. A1 - Franke, R. A1 - Ziegenhorn, M. A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Experimental determination and numerical simulation of material and damage behaviour of 3D printed polyamide 12 under cyclic loading JF - Enginnering Fracture Mechanics N2 - The material and damage behaviour of additively manufactured polyamide 12 under cyclic loading was characterized by cyclic tests and microstructure analysis by using microscopy, X-ray refraction, and computed tomography. The results were used to determine parameters for the viscoplastic material model by Chaboche and a damage model by Gurson-Tvergaard-Needleman. The temperature was monitored during the experiments and the self-heating effect was observed. By including this effect, a higher accuracy could be achieved with the results of mechanical experiments. KW - 3D printing Polyamide 12 KW - Chaboche model KW - GTN model KW - Material and damage behaviour KW - X-ray refraction KW - Computed tomography PY - 2020 DO - https://doi.org/10.1016/j.engfracmech.2019.106841 SN - 0013-7944 VL - 229 SP - 106841-1 EP - 106841-13 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silvestroni, L. A1 - Kupsch, Andreas A1 - Müller, B. R. A1 - Ulbricht, Alexander A1 - Wieder, Frank A1 - Fritsch, Tobias A1 - Sciti, D. A1 - Bruno, Giovanni T1 - Determination of short carbon fiber orientation in zirconium diboride ceramic matrix composites JF - Journal of the European Ceramic Society N2 - In fiber-reinforced components, the fiber alignment and orientation have paramount influence on the thermomechanical properties of the resulting composite, for both short and continuous fiber. Here we present the case of an ultra-refractory matrix intended for extreme environment applications, ZrB2, reinforced with 20 vol% and 50 vol% short carbon fibers. In both cases, fibers tend to align perpendicular to the uniaxial pressure applied during shaping and sintering of a pellet, although the fiber tilt across the pellet thickness is difficult to determine. Moreover, for high volume fractions of reinforcement, the spatial distribution of the fibers is heterogeneous and tends to have domains of preferential orientations. We compare the information on the fiber distribution as collected by scanning electron microscopy images, X-ray computed tomography and synchrotron X-ray refraction radiography (SXRR). The three techniques prove to be complementary. Importantly, we demonstrate that SXRR yields the most statistically significant information due to the largest field of view, yet with a sensitivity down to the nanometer, and that can be successfully applied also to heavy matrix materials, such as zirconium boride. KW - Ceramic matrix composites KW - Synchrotron X-ray refraction radiography KW - X-ray computed tomography KW - Scanning electron microscopy KW - High-temperature ceramics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597712 DO - https://doi.org/10.1016/j.jeurceramsoc.2024.02.048 SN - 0955-2219 VL - 44 IS - 8 SP - 4853 EP - 4862 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-59771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soares, A.P. A1 - Baum, D. A1 - Hesse, B. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Zaslansky, P. T1 - Scattering and phase-contrast X-ray methods reveal damage to glass fibers in endodontic posts following dental bur trimming JF - Dental Materials N2 - Objectives. There is concern that the integrity of fiberglass dental posts may be affected by chairside trimming during treatment. We hypothesize that hard X-ray methods of phase contrast-enhanced micro-CT (PCE-CT) and synchrotron based X-ray refraction (SXRR) can reliably identify and help characterize the extent of damage. Methods. Fiberglass posts were imaged both as manufactured and following trimming with a diamond bur. Each of the posts was imaged by SXRR and by PCE-CT. Datasets from PCE-CT were used to visualize and quantify 2D and 3D morphological characteristics of intact and of damage-affected regions caused by trimming. Results. The SXRR images revealed fiber inhomogeneities from manufacturing with a significant increase in internal surfaces in sample regions corresponding to damage from trimming. PCE-CT volumes unveiled the micromorphology of single fibers in the posts and some damage in the trimmed area (e.g. fractures, splinters and cracks). Area, perimeter, circularity, roundness, volume and thickness of the glass fibers in the trimmed area were statistically different from the control (p < 0.01). Significance. The integrity of single fibers in the post is critical for bending resistance and for long-term adhesion to the cement in the root canals. Damage to the fibers causes substantial structural weakening across the post diameter. Glass fragments produced due to contact with the dental bur may separate from the post and may significantly reduce bond capacity. The above mentioned synchrotron-based imaging techniques can further facilitate assessment of the structural integrity and the appearance of defects in posts (e.g. after mechanical load). KW - Fiberglass composite KW - Fiber reinforced dental post KW - X-ray refraction KW - Phase contrast-enhanced micro-CT KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.1016/j.dental.2020.10.018 SN - 0109-5641 VL - 37 IS - 2 SP - 201 EP - 211 PB - Elsevier Inc. AN - OPUS4-52071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Y. A1 - Ulbricht, Alexander A1 - Schmidt, F. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Schwitalla, A.D. T1 - Micro-CT analysis and mechanical properties of low dimensional CFR-PEEK specimens additively manufactured by material extrusion JF - Journal of the Mechanical Behavior of Biomedical Materials N2 - Material extrusion of thermoplastic polymers enables the realization of complex specific designs with high performance composites. The present study aims at evaluating the mechanical properties of carbon fiberreinforced semi-crystalline thermoplastic polymer polyether ether ketone (CFR-PEEK) manufactured by material extrusion and correlating them with results obtained by micro-CT. Samples in the shape of small bars were provided by Kumovis (Munich, Germany). The determination of surface roughness and density was followed by three-point bending tests. To reveal the pore distribution as well as the fusion quality of CFR PEEK when applied with external forces, micro-CT scans were performed with an X-ray microscope before and after the mechanical test to localize the sites where the fracture is generated. The density of CFR-PEEK bars indicated that they had superior mechanical properties compared with our previous study on unfilled 3D printed PEEK (bending modulus: (5.4 ± 0.5) GPa vs. (1.05 ± 0.05) GPa to (1.48 ± 0.10) GPa; bending strength: (167 ± 11) MPa vs. (51 ± 15) to (193 ± 7) MPa). Micro-CT analyses revealed the local 3D-distribution of voids. Voids of 30 μm diameter are nearly spherical and make up the main part of the total porosity. The larger the voids, the more they deviate from a spherical shape. Significant lack-of-fusion voids are located between the deposited filaments. By growing and merging, they act as seeds for the forming fracture line in the region of the flexural specimens where the maximum local tensile stresses occurred under bending load. Our work provides a detailed analysis of printed PEEK with fiber additive and relates this with mechanical properties. KW - CFR-PEEK KW - Material extrusion (MEX) KW - FFF KW - Surface topography KW - Bending property KW - Micro-CT PY - 2023 DO - https://doi.org/10.1016/j.jmbbm.2023.106085 SN - 1751-6161 VL - 146 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -