TY - JOUR A1 - Lozano-Martín, D. A1 - Martín, M. C. A1 - Chamorro, C. R. A1 - Tuma, Dirk A1 - Segovia, J. J. T1 - Speed of sound for three binary (CH4 + H2) mixtures from p = (0.5 up to 20) MPa at T = (273.16 to 375) K JF - International Journal of Hydrogen Energy N2 - Speed of sound is one of the thermodynamic properties that can be measured with least uncertainty and is of great interest in developing equations of state. Moreover, accurate models are needed by the H2 industry to design the transport and storage stages of hydrogen blends in the natural gas network. This research aims to provide accurate data for (CH4 + H2) mixtures of nominal (5, 10, and 50) mol-% of hydrogen, in the p = (0.5 up to 20) MPa pressure range and with temperatures T = (273.16, 300, 325, 350, and 375) K. Using an acoustic spherical resonator, speed of sound was determined with an overall relative expanded (k = 2) uncertainty of 220 parts in 10^6 (0.022%). Data were compared to reference equations of state for natural gas-like mixtures, such as AGA8-DC92 and GERG-2008. Average absolute deviations below 0.095% and percentage deviations between 0.029% and up to 0.30%, respectively, were obtained. Additionally, results were fitted to the acoustic virial equation of state and adiabatic coefficients, molar isochoric heat capacities and molar isobaric heat capacities as perfect-gas, together with second and third acoustic virial coefficients were estimated. Density second virial coefficients were also obtained. KW - Speed of sound KW - Acoustic resonator KW - Heat capacity PY - 2020 DO - https://doi.org/10.1016/j.ijhydene.2019.12.012 SN - 0360-3199 VL - 45 IS - 7 SP - 4765 EP - 4783 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano-Martín, D. A1 - Tuma, Dirk A1 - Vega-Maza, D. A1 - Martín, M. C. A1 - Chamorro, C. R. T1 - Thermodynamic characterization of the (CO2+ O2) binary system for the development of models for CCS processes: Accurate experimental (p, rho, T) data and virial coefficients JF - The Journal of Supercritical Fluids N2 - Continuing our study on (CO2 + O2) mixtures, this work reports new experimental (p, rho, T) data for two oxygen-rich mixtures with mole fractions x(O2) = (0.50 and 0.75) mol·mol−1, in the temperature range T = (250–375) K and pressure range p = (0.5–20) MPa, using a single-sinker densimeter. Experimental density data were compared to two well-established equation-of-state models: EOS-CG and GERG-2008. In the p, T-range investigated, the EOS-CG gave a better reproduction for the equimolar mixture (x(O2) = 0.5), whereas the GERG-2008 performed significantly better for the oxygen-rich mixture (x(O2) = 0.75). The EOS-CG generally overestimates the density, while the GERG-2008 underestimates it. This complete set of new experimental data, together with previous measurements, is used to calculate the virial coefficients B(T, x) and C(T, x), as well as the second interaction virial coefficient B12(T) for the (CO2+ O2) system. KW - Binary mixtures CO2 + O2 KW - Density measurements KW - Equations of state KW - Virial coefficients PY - 2021 DO - https://doi.org/10.1016/j.supflu.2020.105074 SN - 0896-8446 VL - 169 SP - 5074 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-51670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Segovia, J. J. A1 - Tuma, Dirk A1 - Lozano-Martín, D. A1 - Moreau, A. A1 - Martín, M. C. A1 - Vega-Maza, D. T1 - Speed of sound data and acoustic virial coefficients of two binary (N2 + H2) mixtures at temperatures between (260 and 350) K and at pressures between (0.5 and 20) MPa JF - Journal of Chemical Thermodynamics N2 - This work aims to address the technical concerns related to the thermodynamic characterization of gas mixtures blended with hydrogen for the implementation of hydrogen as a new energy vector. For this purpose, new experimental speed of sound measurements have been done in gaseous and supercritical phases of two binary mixtures of nitrogen and hydrogen using the most accurate technique available, i.e., the spherical acoustic resonator, yielding an experimental expanded (k = 2) uncertainty of only 220 parts in 106 (0.022%). The measurements cover the pressure range between (0.5 and 20) MPa, the temperature range between (260 and 350) K, and the composition range with a nominal mole percentage of hydrogen of (5 and 10) mol%, respectively. From the speed of sound data sets, thermophysical properties that are relevant for the characterization of the mixture, namely the second βa and third γa acoustic virial coefficients, are derived. These results are thoroughly compared and discussed with the established reference mixture models valid for mixtures of nitrogen and hydrogen, such as the AGA8-DC92 EoS, the GERG-2008 EoS, and the recently developed adaptation of the GERG-2008 EoS, here denoted GERG-H2_improved EoS. Special attention has been given to the effect of hydrogen concentration on those properties, showing that only the GERG-H2_improved EoS is consistent with the data sets within the experimental uncertainty in most measuring conditions. KW - Speed of sound KW - Acoustic resonance KW - Binary gas mixture PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551482 DO - https://doi.org/10.1016/j.jct.2022.106791 SN - 0021-9614 VL - 171 SP - 1 EP - 13 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-55148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Lozano-Martín, D. A1 - Vega-Maza, D. A1 - Moreau, A. A1 - Martín, M. C. A1 - Segovia, J. J. T1 - Speed of sound data, derived perfect-gas heat capacities, and acoustic virial coefficients of a calibration standard natural gas mixture and a low-calorific H2-enriched mixture JF - Journal of Chemical Thermodynamics N2 - This work aims to address the technical aspects related to the thermodynamic characterization of natural gas mixtures blended with hydrogen for the introduction of alternative energy sources within the Power-to-Gas framework. For that purpose, new experimental speed of sound data are presented in the pressure range between (0.1 up to 13) MPa and at temperatures of (260, 273.16, 300, 325, and 350) K for two mixtures qualified as primary calibration standards: a 11 component synthetic natural gas mixture (11 M), and another low-calorific H2-enriched natural gas mixture with a nominal molar percentage x(H2) = 3 %. Measurements have been gathered using a spherical acoustic resonator with an experimental expanded (k = 2) uncertainty better than 200 parts in 106 (0.02 %) in the speed of sound. The heat capacity ratio as perfect-gas gammapg, the molar heat capacity as perfect-gas Cp,m pg, and the second betaa and third gammaa acoustic virial coefficients are derived from the speed of sound values. All the results are compared with the reference mixture models for natural gas-like mixtures, the AGA8-DC92 EoS and the GERG-2008 EoS, with Special attention to the impact of hydrogen on those properties. Data are found to be mostly consistent within the model uncertainty in the 11 M synthetic mixture as expected, but for the hydrogen-enriched mixture in the limit of the model uncertainty at the highest measuring pressures. KW - Natural gas mixtures KW - Speed-of-sound measurements KW - Equations of state KW - Acoustic virial coefficients PY - 2021 DO - https://doi.org/10.1016/j.jct.2021.106434 SN - 0021-9614 VL - 158 SP - 106434 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -