TY - JOUR A1 - Steglich, P. A1 - Rabus, D. G. A1 - Sada, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, C. A1 - Mai, A. T1 - Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial JF - IEEE Sensors Journal N2 - Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial,we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing. KW - Biosensors KW - Biophotonics KW - Chemosensor KW - Biosensor KW - Microresonator KW - Nanophotonics KW - Optical sensors KW - Photonic sensors KW - Optoelectronic KW - Ring resonator KW - Silicon photonics KW - Miniaturization KW - Lab-on-a-chip KW - Lab-on-chip KW - Waveguide KW - Surface chemistry KW - Silanization KW - Glutaraldehyde KW - Affinity immobilization KW - Antibody KW - Oriented immobilization KW - Real-time measurement PY - 2022 DO - https://doi.org/10.1109/JSEN.2021.3119547 SN - 1530-437X VL - 22 IS - 11 SP - 10089 EP - 10105 PB - IEEE AN - OPUS4-55147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Steglich, P. A1 - Rabus, D. G. A1 - Sada, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, C. A1 - Mai, A. T1 - Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial T2 - TechRixv N2 - Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial, we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing. KW - Lab on a chip KW - Biosensor KW - Cmos KW - Silanization KW - Surface derivatization KW - Evanescent wave PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529360 DO - https://doi.org/10.36227/techrxiv.14909901.v1 SP - 1 EP - 18 PB - IEEE CY - Piscataway Township AN - OPUS4-52936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -